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CONDITIONAL SECURITY RESPONSE
USING TAINT VECTOR MONITORING

CROSS REFERENCE TO RELATED
APPLICATIONS

The present application is related to and claims the benefit
of the earliest available effective filing date(s) from the
following listed application(s) (the “Related Applications™)
(e.g., claims earliest available priority dates for other than
provisional patent applications or claims benefits under 35
USC §119(e) for provisional patent applications, for any and
all parent, grandparent, great-grandparent, etc. applications
of the Related Application(s)).

RELATED APPLICATIONS

For purposes of the United States Patent and Trademark
Office (USPTO) extra-statutory requirements (described
more fully below), the present application is:

1. For purposes of the USPTO extra-statutory require-
ments, the present application constitutes a continua-
tion-in-part of U.S. patent application Ser. No. 13/136,
024 entitled CONTROL FLOW INTEGRITY filed on
Jul. 19, 2011, and naming Andrew F. Glew, Daniel A.
Gerrity, and Clarence T. Tegreene as inventors, which
is currently co-pending, or is an application of which a
currently co-pending application is entitled to the ben-
efit of the filing date.

2. For purposes of the USPTO extra-statutory require-
ments, the present application constitutes a continua-
tion-in-part of U.S. patent application Ser. No. 13/136,
400 entitled ENCRYPTED MEMORY filed on Jul. 29,
2011 now U.S. Pat. No. 8,930,714, and naming Andrew
F. Glew, Daniel A. Gerrity, and Clarence T. Tegreene as
inventors, which is currently co-pending, or is an
application of which a currently co-pending application
is entitled to the benefit of the filing date.

3. For purposes of the USPTO extra-statutory require-
ments, the present application constitutes a continua-
tion-in-part of U.S. patent application Ser. No. 13/136,
401 entitled FINE-GRAINED SECURITY IN
FEDERATED DATA SETS filed on Jul. 29, 2011 now
U.S. Pat. No. 8,943,313, and naming Andrew F. Glew,
Daniel A. Gerrity, and Clarence T. Tegreene as inven-
tors, which is currently co-pending, or is an application
of which a currently co-pending application is entitled
to the benefit of the filing date.

4. For purposes of the USPTO extra-statutory require-
ments, the present application constitutes a continua-
tion-in-part of U.S. patent application Ser. No. 13/136,
666 entitled SECURITY PERIMETER filed on Aug. 4,
2011, and naming Andrew F. Glew, Daniel A. Gerrity,
and Clarence T. Tegreene as inventors, which is cur-
rently co-pending, or is an application of which a
currently co-pending application is entitled to the ben-
efit of the filing date.

5. For purposes of the USPTO extra-statutory require-
ments, the present application constitutes a continua-
tion-in-part of U.S. patent application Ser. No. 13/136,
670 entitled PROCESSOR OPERABLE TO ENSURE
CODE INTEGRITY filed on Aug. 4, 2011, and naming
Andrew F. Glew, Daniel A. Gerrity, and Clarence T.
Tegreene as inventors, which is currently co-pending,
or is an application of which a currently co-pending
application is entitled to the benefit of the filing date.
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6. For purposes of the USPTO extra-statutory require-
ments, the present application constitutes a continua-
tion-in-part of U.S. patent application Ser. No. 13/199,
368 entitled INTRUSTION DETECTION USING
TAINT ACCUMULATION filed on Aug. 26, 2011, and
naming Andrew F. Glew, Daniel A. Gerrity, and Clar-
ence T. Tegreene as inventors, which is currently co-
pending, or is an application of which a currently
co-pending application is entitled to the benefit of the
filing date.

7. For purposes of the USPTO extra-statutory require-

ments, the present application constitutes a continua-
tion-in-part of U.S. patent application Ser. No. 13/200,
547 entitled INTRUSTION SET ADAPTED FOR
SECURITY RISK MONITORING filed on Sep. 24,
2011 now U.S. Pat. No. 8,955,111, and naming Andrew
F. Glew, Daniel A. Gerrity, and Clarence T. Tegreene as
inventors, which is currently co-pending, or is an
application of which a currently co-pending application
is entitled to the benefit of the filing date.

8. For purposes of the USPTO extra-statutory require-
ments, the present application constitutes a continua-
tion-in-part of U.S. patent application Ser. No. 13/200,
557 entitled RESOURCE ALLOCATION USING
ENTITLEMENTS filed on Sep. 24, 2011 now U.S. Pat.
No. 9,170,843, and naming Andrew F. Glew, Daniel A.
Gerrity, and Clarence T. Tegreene as inventors, which
is currently co-pending, or is an application of which a
currently co-pending application is entitled to the ben-
efit of the filing date.

9. For purposes of the USPTO extra-statutory require-
ments, the present application constitutes a continua-
tion-in-part of U.S. patent application Ser. No. 13/200,
551 entitled RESOURCE ALLOCATION USING A
LIBRARY WITH ENTITLEMENT filed on Sep. 24,
2011, and naming Andrew F. Glew, Daniel A. Gerrity,
and Clarence T. Tegreene as inventors, which is cur-
rently co-pending, or is an application of which a
currently co-pending application is entitled to the ben-
efit of the filing date.

10. For purposes of the USPTO extra-statutory require-
ments, the present application constitutes a continua-
tion-in-part of U.S. patent application Ser. No. 13/200,
556 entitled RESOURCE ALLOCATION WITH
ENTITLEMENT HINTS filed on Sep. 24, 2011, and
naming Andrew F. Glew, Daniel A. Gerrity, and Clar-
ence T. Tegreene as inventors, which is currently co-
pending, or is an application of which a currently
co-pending application is entitled to the benefit of the
filing date.

11. For purposes of the USPTO extra-statutory require-
ments, the present application constitutes a continua-
tion-in-part of U.S. patent application Ser. No. 13/317,
834 entitled ENTITLEMENT VECTOR WITH
RESOURCE AND/OR CAPABILITIES FIELDS filed
on Oct. 28, 2011 now U.S. Pat. No. 9,098,608, and
naming Andrew F. Glew, Daniel A. Gerrity, and Clar-
ence T. Tegreene as inventors, which is currently co-
pending, or is an application of which a currently
co-pending application is entitled to the benefit of the
filing date.

12. For purposes of the USPTO extra-statutory require-
ments, the present application constitutes a continua-
tion-in-part of U.S. patent application Ser. No. 13/317,
826 entitled ENTITLEMENT VECTOR FOR
MANAGING RESOURCE ALLOCATION filed on
Oct. 28, 2011 now U.S. Pat. No. 8,813,085, and naming
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Andrew F. Glew, Daniel A. Gerrity, and Clarence T.
Tegreene as inventors, which is currently co-pending,
or is an application of which a currently co-pending
application is entitled to the benefit of the filing date.
13. For purposes of the USPTO extra-statutory require-
ments, the present application constitutes a continua-
tion-in-part of U.S. patent application Ser. No. 13/317,
825 entitled TAINT VECTOR LOCATIONS AND
GRANULARITY filed on Oct. 28, 2011, and naming
Andrew F. Glew, Daniel A. Gerrity, and Clarence T.
Tegreene as inventors, which is currently co-pending,
or is an application of which a currently co-pending
application is entitled to the benefit of the filing date.
The United States Patent and Trademark Office (USPTO)
has published a notice to the effect that the USPTO’s
computer programs require that patent applicants reference
both a serial number and indicate whether an application is
a continuation or continuation in part. Stephen G. Kunin,
Benefit of Prior-Filed Application, USPTO Electronic Offi-
cial Gazette, Mar. 18, 2003. The present applicant entity has
provided a specific reference to the application(s) from
which priority is being claimed as recited by statute. Appli-
cant entity understands that the statute is unambiguous in its
specific reference language and does not require either a
serial number or any characterization such as “continuation”
or “continuation-in-part.” Notwithstanding the foregoing,
applicant entity understands that the USPTO’s computer
programs have certain data entry requirements, and hence
applicant entity is designating the present application as a
continuation in part of its parent applications, but expressly
points out that such designations are not to be construed in
any way as any type of commentary and/or admission as to
whether or not the present application contains any new
matter in addition to the matter of its parent application(s).
All subject matter of the Related Applications and of any
and all parent, grandparent, great-grandparent, etc. applica-
tions of the Related Applications is incorporated herein by
reference to the extent such subject matter is not inconsistent

herewith.

BACKGROUND

Malicious software, also called malware, refers to pro-
gramming (code, scripts, active content, and other software)
designed to disrupt or deny operation, gather information to
violate privacy or exploitation, gain unauthorized access to
system resources, and enable other abusive behavior. The
expression is a general term used by computer professionals
to mean a variety of forms of hostile, intrusive, or annoying
software or program code.

Malware includes various software including computer
viruses, worms, Trojan horses, spyware, dishonest adware,
scareware, crimeware, rootkits, and other malicious and
unwanted software or program, and is considered to be
malware based on the perceived intent of the creator rather
than any particular features. In legal terms, malware is
sometimes termed as a “computer contaminant,” for
example in the legal codes of U.S. states such as California.

SUMMARY

An embodiment or embodiments of a computing system
can conditionally trap based on a taint vector. A computing
system can comprise at least one taint vector operable to list
at least one of a plurality of taints indicative of potential
security risk originating from at least one of a plurality of
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resources, and response logic operable to monitor the at least
one taint vector and respond to a predetermined taint con-
dition.

BRIEF DESCRIPTION OF THE DRAWINGS

Embodiments of the invention relating to both structure
and method of operation may best be understood by refer-
ring to the following description and accompanying draw-
ings:

FIGS. 1A, 1B, 1C, 1D, and 1E are respectively, first,
second, third, fourth, and fifth schematic block diagrams,
and a graphical data description depict embodiments of a
computing system adapted to manage security risk by moni-
toring taint indications and responding to a taint condition
indicative of security risk;

FIG. 1F is a graphical data description showing an aspect
of operation of the computing system;

FIGS. 1G and 1H are data structure diagrams illustrating
example embodiments of taint vector;

FIGS. 2A through 27 are schematic flow diagrams depict-
ing an embodiment or embodiments of a method operable in
a computing device adapted to manage security risk by
monitoring taints and responding to predetermined taint
conditions detected by the monitoring, for example by
conditionally trapping based on the taint vector;

FIGS. 3A and 3B are schematic block diagrams showing
embodiments of a computer program product adapted to
manage security risk by responding to monitored taint
indications; and

FIGS. 4A and 4B are schematic block diagrams illustrat-
ing embodiments of a computing system adapted to manage
security risk by monitoring taint indications and responding
to a detected security risk condition.

DETAILED DESCRIPTION

In various embodiments, computer systems and associ-
ated methods can be configured to include one or more of
several improvements that facilitate security. One aspect can
be accumulation of taint indicators to distinguish between
safe and potentially unsafe data received from safe and
potentially unsafe sources. Another aspect is specification
and usage of a taint vector to enable monitoring and tracking
of a large number of resources and conditions or a wide
variety of types without burdening the system and opera-
tions with a significant amount of hardware and complexity.

Security in existing networks, systems, and computers is
coarse-grained due to large granularity of native code, for
example imposed by the 4 kilobyte (kb) size of a virtual
memory page. Security is sought in an environment char-
acterized by running of applications that share data with
other entities. Security is coarse-grained in that memory
blocks can be individually protected. For binary code or
machine code, the 4 kb granularity encompasses a large
amount of data in comparison to the typical 10 or 12-bit size
of machine code words for which individual protection may
be sought.

Another security technique can be to assign data to a
particular virtual machine, which is even more coarse-
grained. For example, if security is sought in the context of
a browser not known to be secure, the browser can be
assigned a virtual machine that runs only the browser. A
virtual machine can encompass more than a CPU alone and
include other components and devices such as motherboard
1/O devices. The virtual machine thus can be much larger
than the 4 kb granularity of memory blocks.
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Security can also be sought in software or interpretive
environments, for example using Java byte code or C-sharp
byte code, which can be more fine-grained but at the cost of
much slower performance. An interpreter can support any
protection desired, even down to individual bits but is much
slower than the machine code level. Performance can be
accelerated only by more coarse-grained checking.

What is desired is fine-grained security with suitable
speed performance. Fine-grained security is directed toward
protecting memory in fine-grained pieces.

Fine-grained security can support resource allocation and
resource scheduling, and can be supporting technology for
hardware scheduling, virtual memory. Fine-grained security
facilitates, for example, for running applications on a com-
puter controlled and owned by another entity.

Various techniques can be used to identify the memory
items to be protected including pointers such as a pointer to
an object or metadata associated with a pointer, offsets,
addresses, and the like.

An example fine-grained security paradigm can use meta-
data associated with a pointer that identifies a lower bound,
and upper bound, and permissions. The pointer can be
enabled to point to particular objects or even to any position
within an object. Metadata can specify permissions includ-
ing memory locations to which data can be written, when
program code is allowed to execute, how long writing is
allowed, and the like. Permissions can be associated with
data objects, for example assigning a pointer to an object
and, using permissions, allowing only methods belonging to
that object to access the object. Another example of permis-
sions can enable access to data, but only for specified
purposes, for instance to enable a first running of an object
and access allowed to only part of a routine, while prevent-
ing access by others. In another example, a particular
method can be permitted to run a limited number of times or
just one time, and can prevent subsequent access to data
when the data has been previously exposed to an authorized
reader.

Permissions can implement a concept of poisoning. For
example, a user can enter a name into a text field and mark
a poisoned bit that prevents subsequent branching or sub-
routine return. The poisoned bit can function as a dirty bit
which indicates whether an item such as an object, memory,
or other resource is dirty, which prevents predetermined
purposes or actions to the item, for example preventing
actions applied to a data block or object, such as not
allowing return.

An illustrative computer system can be configured for
fine-grained security as supporting infrastructure in a con-
cept of federated sharing and federated data sets. Sensor
fusion involves fusing of data and data sets in numerical
aspects and permissions aspects, wherein data and data sets
are fused in conditions of a first entity owning or controlling
a first sensor and a second entity a second sensor.

Fine-grained security can be implemented in an infra-
structure can be implemented in an architecture including
servers and clients. For example, gaming code servers and
gaming console clients can interact by running program
code that executes in part on machines controlled by the
server and in part on machines controlled by the client.
Fine-grained security enables the interaction to be mutually
trusted by both sides.

Fine-grained security can be configured to exploit existing
infrastructure aspects such as the Trusted Platform Module
(TPM) which is installed in computer systems somewhat
universally but little used in practice. TPM generally
includes secure storage for keys little or no security logic.
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In some embodiments, a servers and clients architecture
can implement fine-grained security using one or more
server downloaded modules. For example, a gaming code
server can transfer a server downloaded module that
executes on a client wherein the client’s user software and
operating system is not able to read associated TPM keys.
Fine-grained security can be configured to prevent the client
or user operating system from reading the TPM keys, for
example to ensure isolation in software, and further config-
ured to prevent physical attacks for example via a device
such as a logic analyzer on the bus reading sensitive infor-
mation.

Some system embodiments which support fine-grained
security can be activated at boot-strap loading of a computer,
for example via microcode executing in the processor. A
further aspect of fine-grained security can include physical
security of the TPM, for example through use of tamper-
evident/resistant packaging. At boot-strap loading, TPM can
perform various security operations such as inspecting soft-
ware version and possibly microcode, ensuring viability of
software, for example by creating and applying a hash to
each level of code (microcode, firmware, software, and the
like), checking against previously run code, signing-off on
viability if warranted, and printing a signature of executing
code to enable determination of trust.

Fine-grained security operations can further include
building or creating a chain of trust, checking each part of
operation beginning with TPM, then checking security dur-
ing operating system functions, downloading of modules,
and execution of procedures. In an example configuration,
fine-grained security can perform checks of operation sys-
tem functions which, to the first order, control all operations.

An example of chain of trust can begin with trust of an
operating system (for example by an association such as
Motion Picture Association of America (MPAA), Interna-
tional Game Developers Association (IGDA), and the like).
If the operating system is certified and fine-grained security
operable under the certified operating system ensures that
the system is not hacked, the chain of trust is established
since the operating system prevents user code from access-
ing downloadable code.

Weaknesses of the chain of trust can be that the process
is too linear and easy to break since a single-point of failure
breaks trust. Chain of trust also has problems ensuring
privacy.

An extension that can improve chain of trust is a late-
secure boot which is run later than a typical bootstrap load
and can involve security checking in an operating system
that is not yet trusted. At running of the late-secure boot, a
security initialization is run which starts security process
booting in a system that is already running.

A more secure concept of security can be a web of trust.
The web of trust can have multiple trust levels which hand
trust to the operating system. At each trust level, software
can validate code in a stack of code to establish trust. In the
web of trust, a failure at some point can be rechecked
according to a byzantine path which forms a set of protocols
to establish trust. The operating system can use pathfinding
or agglomerated trust protocols to analyze trust at each level
to enable multiple levels or types of trust validation.

Intrusion detection can be an aspect of fine-grained secu-
rity.

Intrusion detection can use the concept of poisoning to
implement fine-grained security. Poisoning can be used for
protection, for example in the case of sensor data or a sensor
controlled by an untrusted entity. One or more bits can be
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allocated to identify aspects of the target sensor and data.
Poisoning can be data-defined or entity-defined.

A system can enforce security via accumulation which
can be used to quantify poisoning, for example by accumu-
lating multiple indicators of lack of safety or “dirtiness.”
Accumulation can be operable to accumulate on a per-
location basis, per-data basis, overall, or any selected com-
bination. Accumulation can be used to quantify whether data
from a particular source or entity can be trusted, rather than
to detect security attacks per se.

A taint technique can be used to distinguish between safe
and potentially unsafe data received from safe and poten-
tially unsafe sources. The term “taint” can be defined as
potentially unsafe data or data received from a potentially
unsafe source. Unsafe data and/or sources are untrusted as
potentially dangerous, malicious, or suspect according to a
predetermined security policy. Security criteria of tainting
can be specified independently for various applications,
conditions, and/or implementations ranging, for example,
from a source, data, and/or resources via which the data is
transmitted that are not known to be completely trusted to
those known to have positive confirmation of ill-intent,
malice, or compromised security attributes. In some imple-
mentations, analysis of the data itself may contribute to taint
characterization.

Accumulation enables analysis of a particular sensor
which is not untrusted as fundamentally faulty or inherently
dishonest but rather imperfect to some degree, for example
with a signal to noise ratio that allows some errors. Thus,
data may be trusted overall or over time, but possibly an
individual bit may not be trusted. Accumulators can gather
taints up to a predetermined threshold, after which an action
may be taken. A taint can arise from software, can be
forwarded from an original source, may result from an
attacker attempting to break into a web browser, or may be
“operational” for null pointers, buffer overruns, and other
faults. In various embodiments and/or conditions, accumu-
lation may be per source, overall, or both. One or more bits
can be accumulated per untrusted source. The accumulation
can be configured to be subject to various selected algo-
rithms, for example power law, race functions, and the like.

In a power law algorithm, the frequency of a security risk
event is presumed to vary as a power of some attribute of the
event. The power law relationship is believed to apply to
distributions of a wide variety of physical, biological, and
man-made phenomena such as sizes of geophysical and
weather events, neuronal activity patterns, frequencies of
words in various languages, and many other examples.

In a race function, a security risk event is presumed to
follow exponential or geometric change, either growth or
decay, wherein the rate of change of a mathematical function
is proportional to the function’s current value.

An accumulator can be configured using any suitable
arithmetic or logic element, and can accumulate data in any
suitable manner, such as a counter or bit per source, a bit per
accumulator. The accumulator can be configured to address
information from different sources and at different times in
selected distinctive manners. For example, an accumulator
can be set so that 99% correct data is sufficient and a clean
bit indicated despite occasional errors, while data from
another source may be known to be valid only 65% of the
time wherein a selected algorithm can be run, for example
power law, race function, or the like, to determine validity.

On the specific case of sensor, some errors occur because
sensors aren’t perfect, a signal to noise characteristic is
present so some errors will occur, even in the case that data
is usually correct 99% of the time. Thus, the data can be
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generally trusted cumulatively with some level of trust to
individual bits. An entity that is not trusted will have outlier
in terms of error rate, not criteria per error rates. In some
circumstances one definition of trusted/untrusted can be
specified or tracking can be done on source and data basis.
In a federated system, tracking can be on the basis of the
sensor of one entity against another entity.

Various other accumulator examples can be implemented.
A counter per affiliation can be defined wherein a low level
is merged up to a higher level. Pathways to a system can
track sources of data through a system such as by running
data through a specified pathway through a “validator,” a
software program or hardware logic used to check the
validity of multiple taint indicators in terms of security risk.
A 2-4-bit counter can be used to track one-bit per source or
a counter per source.

Tainting can be performed on a one-bit basis for a small
number of sources which can be federated down to whatever
sources are desired. An accumulator can be configured to
count the number of taints, such as the taints per memory
unit (per byte for example). Statistics can be performed on
any suitable taint counter—a counter per bit, 2-bit counter,
4-bit counter and the like. Examples of taints and/or events
to filter can be used for taint monitoring and creation of a
trust profile and include: instructions tainted, the number of
tainted instructions, the number of instructions written as a
result, the number of data loads and stores, the number of
data memory accesses, outputs, calls/returns, branches (for
control flow), integer overflows, network I/O, and the like.
An integer overflow can be handled as a taint. Integer
overtlows occur frequently and can be legitimate about half
the time, and thus a condition indicating possible error but
by no means certainty of error.

Monitoring of network 1/O is useful for detecting when a
virus attempts to call home. The system can trap to software
if any specified taint occurs, a simple reaction for any
suspicious event.

Accumulators can be used to build a trust profile over
time, such as by using taint information as raw data for
creating the trust profile. The trust profile can be used to
lower and raise the trust level over time, and to make
subsequent decisions. For example, a bit or counter can
decay over time to balance race with accumulation.

Any suitable comparisons can be defined for particular
conditions. In an illustration, a trust profile of an I/O process
can be built over time. In a simple control scheme, a
high-risk operation can be monitored so that if the number
of taints is greater than a predetermined threshold, I/O can
be blocked. Over time, the count can be decremented to
account for spurious events.

Suspicious activities can be monitored using compari-
sons, for example using a counter or a single-bit designating
suspicious events. Examples of suspicious activities can
include null pointer references which are not always inten-
tional or malware, buffer overruns/overflows which are
usually untrusted, repeated attempts to access a key, and the
like.

Comparisons can be used to efficiently track suspicious
activities, particularly in conditions that complex statistical
analysis is unavailable or unwarranted.

A taint vector, operable as an intrusion detection system,
can be created for tracking multiple events or conditions. An
example taint vector can comprise 16-64 bits corresponding
to associated sources, events, conditions, and/or suspicious
activities. Each taint vector of a composite vector may
correspond to a source of data or a type of activity. Taint
vectors enable monitoring and tracking of a large number of
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resources and conditions or a wide variety of types without
burdening the system and operations with a significant
amount of hardware and complexity. The taint vector can
include a various decay options tailored to the particular
information monitored. For example, the taint vector can
decay after a certain number of operations to avoid trigger-
ing on outlying events. Possibly schemes for implementing
decay can include: 1) increment/decrement using a single
vector which is incrementing and decrementing is performed
on the same vector, 2) copying the vector to memory
periodically to maintain on old version while continuously
incrementing and decrementing to enable restoration of the
old version subsequent to reacting to an invalid or error
condition, and 3) impose a decay that is a race of decay
versus accumulation.

A taint vector can be configured to introduce a new class
or type of security element, not taints but rather suspicious
activities including null pointers and buffer overflows. Sus-
picious events are taints or can be treated and propagated
like taints.

The taint vector can be tailored to monitor various com-
parisons including, for example: are any elements greater
than threshold, are all greater than threshold, is the sum of
all or some elements greater than threshold, is the sum
greater than an intermediate value, and the like. The system
can trap if the taint vector meets predetermined conditions.

The taint vector can be considered an accumulator of faux
paus, for example null pointer references, attempts to access
a secure part of the CPU, buffer overruns (a common
hacking technique). The taint vector can be used to monitor
events or conditions that are not necessarily attacks or
failures but may be innocent or coincidental, but originates
in a region that raises suspicion, wherein a feature of the
region can raise or lower suspicion. A taint vector can be
configured to focus more on the type rather than origin of
malicious event or condition that occurs. The taint vector
can include primary and secondary criteria, and accumulates
suspicious actions while also considering indicial of levels
of suspiciousness including extra data and extra identifiers
relating to the actions for further analysis. Accordingly,
although the taint vector can consider the source of an event
or condition in determining suspiciousness, actions, conse-
quences, and usage can be more pertinent to identification of
an attack or malicious condition. For example, known
system calls are associated with reading data off web pages
and thus tagged as suspicious for further analysis in which
the source of the system calls can be identified (for example
via operating system software that injects a label identifying
the source).

The taint vector can be configured to set a hierarchy of
suspicion based on the source, type, or identify of an event.
For example, a buffer overrun can be considered worse than
a null reference. The source of the event can be considered
to assign a level of suspicion such as whether the sensor
from a known and trusted bank or an unknown bank or
foreign hack site.

Information can reach the taint vector from multiple
various sources. For example, some system calls are asso-
ciated with accessing information from web pages. These
calls are tagged and the operating system injects a label
indicating that the data originated from a web browser at a
particular identified site. The protocol for receiving a taint
notice for tainting originating in a remote system outside the
system which controls the taint vector can be that the taint
notice is placed by software as some level, possibly software
in the remote system. The taint notice is received from
software from various sources such as by forwarding from
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the originating source, determined by a person attempting to
write to a web browser, originating from suspicious opera-
tions or faults (such as buffer overflows), and, generally,
from an indication that data has some level of questionabil-
ity.

The taint vector can be implemented to include tolerances
set based on questionability of the source or event. Zero
tolerance can be set for particularly suspicious or harmful
events and/or sources wherein a single event can result in a
maximum response. For a low threshold, the response for
one taint can result in a trap, exception, or shutdown, and
may be used, for example, in nuclear power plant control.

A medium threshold can be a hybrid of low and high
threshold and call for a medium response and include
aspects of decay. An illustrative setting for medium thresh-
old may allow two taints per hour and thus have decay of one
taint per half hour. In a typical condition such as one buffer
overflow per X amount of real time or CPU time or other
interval, a monitor tracks events. Decay is implemented to
account for rare and spurious events that are likely to occur
by chance when monitoring continuously for vast time
spans, and do not surpass threshold for an error condition.
Decay is thus is imposed upon accumulation so triggering
occurs when more events per unit time (other interval,
instruction cycles, and the like) than accommodated by
decay are indicative of an error condition. If events occur too
often, the threshold of rate of occurrences indicative of
suspiciousness (taint rate) is too high and the threshold can
be reset.

An example of high threshold can allow twelve taint
counts per unit time such as for cheap video forwarded from
a provider or signals from ubiquitous cell phones. Most
events can be ignored in the absence of some indication of
attack. Thresholds are set to balance a sufficient level of
security with communications characterized by large
amounts of data and frequent errors.

Iftaints exceed the threshold, then suspicion if sufficiently
great that some action or response is taken. A suitable
response can be trap, exception, notification, alarms, and the
like.

In various system embodiments, taint vectors can be
configured at selected locations and with selected granular-
ity. A simple system can have a single taint bit. A slightly
more complex system can have a single taint vector allo-
cating multiple entries. Additional control and functionality
can be attained by assigning a taint vector per register, for
example to track computer processor register EAX (in 32-bit
Intel Architecture IA-32) while not tracking register EBX.

A taint vector can be configured to track memory taints,
for example tracking every byte in a computationally and
resource expensive arrangement. In contrast, a less extensive
implementation can assign a single taint for all memory such
as with 64 entries. A vector of 64 entries may have one bad
indicator operable as a running gauge of operations. The
taint vector can indicate on/off status or a range.

Taints can be allocated by memory page which can be
challenging for usage with Intel processors since no free bits
are available and page tables are read-only. To address this
challenge, a system can include a memory taint hash table
which, if read-only, can indicate a level of taint per memory
block. A read-only memory prevents logging of taints in
memory so that the table is located outside of the read-only
memory. The amount of memory for the table can be
reduced by using a hash. Memory at the hash of an address
can be used to compress the address, for example 4 giga-
bytes (GB) can compress to a 64-kb table. A special instruc-
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tion can be specified in which store memory at a specified
address receives a predetermined value.

Taints can be allocated by byte to attain the finest possible
granularity. A special instruction can be specified in which
memory at a specified address has a taint field equal to a
predetermined taint field value. Another example special
instruction can be specified to create a taint hash vector in
which memory receives a specified hash of the address
where the hash is operable to compress the address, for
example 4-GB of memory can be compressed to a 64-kb
table. Once the hash is performed, security is no longer
determinant or precise so that false positives can occur. The
false positives can be addressed using intrusion detection
capabilities of the system. The taint hash vector is costly in
terms of resources, possibly 1-2 bits per byte maximum—a
substantial amount of overhead.

A taint vector can be configured to segregate memory by
type, for example distinguishing memory for storing pro-
gram code from memory for storing data. Different types of
segments can be allocated for corresponding different granu-
larities of taint information.

Taints can be allocated by hardware process identifier
(PID). For example, one vector can be allocated per hard-
ware thread to address context switching wherein a software
thread’s vector is stored.

In another option, taints can be allocated wherein a
cross-thread taint is enabled, for example to address some
system-wide taint.

In various embodiments, the operation of tainting can be
allocated among hardware devices and components and
software. In a particular embodiment, hardware can track
taints while software can inject initial taint notifications,
except when hardware can determine a priori that an event
or operation is bad. In example functionality, hardware can
generate a trap to software according to predetermined
“trap-if” rules that are most suitable selected so that rules are
simple and easy to describe, are activated in response to a
specific condition, and easy to implement. A trap can be
activated based on selected threshold conditions.

In various system embodiments, taint vectors can be
configured with selected decay and using selected decay
mechanisms. Decay can be applied periodically for example
either on a consistent basis or with a varying period based on
a sensitivity meter. Characteristics of the sensitivity meter
such as rate of subtraction can be selected based on the
environment of a system, for example whether a computer
is running on a home network, a business environment, a
public network, and the like.

Decay methods can include subtraction of selected num-
ber N or shifting the taint vector in an interval of time,
instruction count, or other suitable metric (time periods,
processor frequency or cycles, and the like). The decay
parameter and rate can be programmable. The rate and/or
period can vary with the sensitivity meter, also possibly in
a programmable manner, based on conditions such as type of
network (home, public, work), activity (gaming, web brows-
ing, office or scientific applications), and other conditions,
for example multiple taints from a known particularly
untrustworthy source. The rate and/or period can also vary
according to hardware environment or perspective, for
example whether the hardware is constrained to a fixed rate
or enabled for a programmable rate such as via a register
loaded by software with pertinent information.

A special instruction can be created to facilitate setting of
the sensitivity meter. The instruction can operate in con-
junction with the operating system to read a register indi-
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cating the level of protection and can change the rate in
response to operation of the sensitivity meter.

A Taint Adjustment Vector (TAV) can be formed to adjust
rate and period dynamically. The TAV can comprise a timer
register which can automatically decrement a set of rates. In
an example of TAV operation, the TAV including one or
more taint adjustment vector parameters can be applied to
the Taint Vector (TV) upon expiration of the timer. In
various implementations, the TAV can be applied to the TV
by adding the TAV to TV, adding a delta, adding another
selected value, shifting, shift-add, multiply, divide. Multiple
timers can be used to enable decay for one type of infor-
mation to be different from decay for another type of
information. Taint Adjustment Vectors or timers can be
universal over multiple Taint Vectors or per Taint Vector.

A special instruction, for example a system-level “set taint
vector parameter” instruction, can be created to support the
TAV. The instruction can act under operating system control
in conjunction with multiple timers, each of which controls
a set of taint adjustment parameter vectors (TAVs) which are
used to adjust the current taint vector. The instruction can set
the TAV and/or timer. The instruction can write to a control
register and allocate the control register in control register
space as a TAV or timer.

Another technique for delay can be recursive addition of
a Taint Bias Vector (TBV) to the Taint Vector (TV), enabling
the operating system to create complicated algorithms in the
operating system time stamp independently of hardware
operation and thus enabling flexibility in modifying, select-
ing, and executing the algorithms. The algorithms can gen-
erally include primitive operations such as a shift, an add,
and a subtract, although any suitable operation can be
performed. TBV can be larger in number of bits than TV.
Bias can constrain software functionality, for example
increasing or decreasing the level of sensitivity based on
relatively complicated factors since the software may not be
completely trusted. Bias can also constrain operation by
preventing instant decay (bias may not be allowed to fully
eliminate security), although the operating system can be
configured to authorize or enable setting of instant decay.

In various system embodiments, taint vectors can be
configured with selected taint elements to describe selected
taint events.

Accidental/non-malicious overflows can be taint events.
Taint handling can be constituted to handle legitimate over-
flows which can occur sporadically and can be expected to
occur. Overflows are examples of known problems. Special
instructions can be created to address such known problems.
Hints can be used in association with instructions, for
example by hint instructions which are dedicated to hint
handling or by adding a hint bit field to an instruction. In the
case of overflow, a hint can be used to notify that a particular
instruction, for example the next instruction, may overtlow.

Hint handling can be added to a taint vector, or to an
“ignore problems” variety of taint vector. For example, a
HINT instruction can be constituted that, rather than the
occurrence of a taint causing accumulation of the taint
vector, a count can be added to an Ignore Problems Taint
Vector (IPTV).

A predictive hint can also be used to allocate resources.
For example, a software routine can use a hint a prediction
of a significant amount of floating point usage. A HINT
instruction can be included in the routine. In another version,
at the beginning of a library function, code can be inserted
to enable predictive preferential scheduling. The HINT
instruction can be part of the library, for example at the
beginning, or associated with the library. Code can be
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inserted in the library, such as at the beginning of a library
function requesting particular resources, for example for
preferential scheduling. In one example form, a call to a
system call can request the operating system to allocate
more resources. In another example form, a hint instruction
can be sent to hardware to implement the hint and the
hardware responds by using the hint in hardware scheduling,
such as push, pop, pull, stack, or the like. The hint instruc-
tion typically has no direct effect on program execution. The
program will run correctly except for changes in perfor-
mance and battery life.

Predictive hints can also be implemented other than with
a hint instruction. Rather than an instruction, the hint may be
part of the data structure. For example, X number of bits can
relate to expected capabilities to which a process can be
entitled such as a vector or a structure. Software can
determine information for a performance descriptor, then
fills in the data so that metadata of a descriptor determines
importance of the performance descriptor.

Accordingly, predictive hints can be implemented in
hardware, software, the instruction set architecture, or a
combination of configurations. Hardware is typically more
constrained than a software implementation. A software
library enables the hint to be passed in a linked list of hash
trees for passage into hardware, for example as a 128-bit or
256-bit register. Such an implementation can be imple-
mented in an application programming interface (API) but
sufficiently simple to be part of hardware. Thus, the API can
be designed, then simplified sufficiently to put into hard-
ware.

A taint vector can be used to simultaneously manage,
monitor, analyze, and respond to taints associated with
various resources independently from one another. The taint
vector can be specific to particular sources and resources
including networks, systems, processors, memory, hard-
ware, software systems, virtual entities, and the like, includ-
ing various aspects of operation. The taint vectors can
operate on a resource pool and enable detection and reso-
Iution of various types of taints. Accordingly, the taint
vectors can be used to manage security risks and faux paus
of resources.

In computing systems, operating systems, network sys-
tems, and the like, a trap, which can also be termed an
exception or fault, is generally a type of synchronous
interrupt which can be caused by an unusual or exceptional
condition. Examples of such conditions can be an overtlow,
breakpoint, invalid memory access, division by zero, and the
like. A trap can result in a switch to kernel mode in some
computing systems so that the operating system performs a
predetermined action before returning control to the origi-
nating process. A trap in a system process is generally more
serious than a trap in a user process. A trap can be an
interrupt intended to initiate a context switch to a monitor
program or debugger.

A trap can be thrown based at least partly on a current
value of an entry of a taint vector. As taint vector entries are
increased, a trap can be thrown based on a current value of
a taint vector entry or one or more thresholds. Thresholds
can be varied by affiliate, current system characteristics or
activities, or the like. Conditions can involve one or more
comparisons between taint vector entries and thresholds.
Thresholds can be entry-specific, apply to similar affiliates,
be universal, be applied for a sum of taint vector entries, and
the like. Thresholds can be set or changed to reflect different
tolerance levels. A variety of target functions, weights,
masks, etc. may be implemented. Referring to FIGS. 1A,
1B, 1C, 1D, and 1E respectively, first, second, third, fourth,
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and fifth schematic block diagrams depict embodiments of a
computing system 100 that is operable to conditionally
trapping based on a taint vector 104. FIG. 1F is a graphical
data description showing an aspect of operation of the
computing system 100. FIGS. 1G and 1H are data structure
diagrams illustrating example embodiments of taint vector
104. A computing system 100 can comprise at least one taint
vector 104 operable to list at least one of a plurality of taints
105 indicative of potential security risk originating from at
least one of a plurality of resources 102, and response logic
106 operable to monitor the at least one taint vector 104 and
respond to a predetermined taint condition 108.

As shown in FIG. 1G, trapping can be based on a taint
vector 104 to facilitate intrusion detection using a taint
mechanism. In various embodiments, the computing system
100 can be configured such that the plurality of taints 105
comprise one or more of a plurality of distinct classes 110
comprising a plurality of distinct sources 112, events 114,
activities 116, and/or conditions 118.

The computing system 100 can be constituted wherein
ones of the at least one taint vector 104 comprise a plurality
of'entries 120 selectively allocated to ones of the plurality of
taints 105.

Referring to FIG. 1A, in various embodiments and/or
conditions, the computing system 100 can also respond to a
detected security risk event and/or condition. For example,
the computing system 100 can configured wherein the
response logic 106 is operable to trap based at least partly on
a current value of an entry 120 of the at least one taint vector
104.

The computing system 100 can respond to the detected
security risk event and/or condition in a predetermined
manner. For example, various embodiments of the comput-
ing system 100 can be operable to respond to security risk
upon determination of the at least one security risk event by
a response selected from various responses such as ignoring
a security risk event, logging the at least one security risk
event, displaying a notification, displaying a warning mes-
sage, generating an alarm, and the like. Other responses can
extend beyond passing of information to dynamic manage-
ment and control of system operations such as preventing a
memory and/or register write, modifying operating fre-
quency, modifying operating voltage, modifying an operat-
ing parameter, performing a system call, and the like. Even
more drastic responses can terminate a particular process,
and end operations of some or all resources, for example by
calling a trap and/or exception, terminating operation of
selected resources, activating a system shutdown, and the
like.

In various embodiments, the computing system 100 can
implement one or more “Trap-If Rules” that enables trap-
ping, for example to a predetermined software process, for
any selected condition. Typically, the rules can be simple
and easy to describe and implement. Accordingly, the
response logic 106 can be operable to accumulate taints 105
in at least one entry 120 of the at least one taint vector 104
to trap based at least partly on a current value of an
accumulated entry 120 of the at least one taint vector 104.

In some embodiments and/or applications, the computing
system 100 can be constituted such that the response logic
106 is operable accumulate taints 105 in at least one entry
120 of the at least one taint vector 104 to trap based at least
partly on a comparison of a current value of an accumulated
entry 120 of the at least one taint vector 104 to a threshold.

The taint vector 104 can be an accumulator of faux paus
such as a null pointer reference, an attempt to access a secure
part of the CPU, a buffer overrun or other similar common
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hacking techniques, and the like. A taint can be any event or
condition that may be innocent or coincidental but possibly
originating in a region that raises suspicion. Various regions
or sources can be assigned various levels of suspicion. Thus,
the computing system 100 can implement various target
functions for analysis of taints 105 to attain optimization in
determining security risks. In some implementations and/or
conditions analysis can focus more on the type of malicious
event that occurred rather than the origin. Hence, the com-
puting system 100 can be formed such that the response
logic 106 is operable apply at least one function 122 to the
at least one entry 120 of the at least one taint vector 104.

In various embodiments and/or applications, the comput-
ing system 100 can be constituted wherein the at least one
function 122 is selected from a group consisting of weights,
masks, sums, combinations, arithmetic functions, logical
operations, and transforms.

In various embodiments, the computing system 100 can
be configured wherein the response logic 106 is operable to
respond to at least one security risk event with at least one
response selected from responses including ignoring the at
least one security risk event; logging the at least one security
risk event; displaying a notification; displaying a warning
message; generating an alarm; preventing a memory and/or
register write; modifying operating frequency; moditying
operating voltage; modifying an operating parameter; per-
forming a system call; calling a trap and/or exception;
terminating operation of selected resources 102; and acti-
vating a system shutdown, and the like.

In various embodiments, the computing system 100 can
handle taints 105 of various types. For example, the com-
puting system 100 can be configured such that one or more
of'the plurality of taints 105 can be selected from among null
pointer references, attempts to access a secured part of a
processor, attempts to access a secured resource, buffer
overruns, events originating in a region that raises suspicion,
faults, integer overflow, multiple taint indicators that exceed
at least one predetermined threshold, a taint indicated by
power law analysis, a taint indicated by a race function,
attempts to access a key, and many others.

The taint vector can be implemented to include tolerances
or thresholds set based on questionability of the source or
event. Zero tolerance can be set for particularly suspicious
or harmful events and/or sources wherein a single event can
result in a maximum response. For a low threshold, the
response for one taint can result in a trap, exception, or
shutdown, and may be used, for example, in nuclear power
plant control. A medium threshold can be a hybrid of low
and high threshold and call for a medium response and
include aspects of decay. An example of high threshold can
allow twelve taint counts per unit time such as for cheap
video forwarded from a provider or signals from ubiquitous
cell phones. Most events can be ignored in the absence of
some indication of attack. Thresholds are set to balance a
sufficient level of security with communications character-
ized by large amounts of data and frequent errors. If taints
exceed the threshold, then suspicion if sufficiently great that
some action or response is taken. A suitable response can be
trap, exception, notification, alarms, and the like. Accord-
ingly, referring to FIG. 1B, the computing system 100 can
further comprise thresholding logic 124 operationally
coupled to the response logic 106 which is operable to set a
threshold for application to at least one entry 120 of the at
least one taint vector 104. The response logic 106 can be
operable to trap based at least partly on a comparison of the
at least one entry 120 of the at least one taint vector 104 to
the threshold.
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In some embodiments, the computing system 100 can be
formed wherein the thresholding logic 124 is operable to set
or modify a threshold for application to at least one entry
120 of the at least one taint vector 104 based on a tolerance
level selected on the basis of consequences of a security risk
event.

Thresholds can vary by affiliate, current system charac-
teristics or activities, conditions, and the like. Conditions
can involve one or more comparisons between taint vector
entries and thresholds. Hence, the computing system 100
can be configured wherein the thresholding logic 124 is
operable to set a threshold for application to at least one
entry 120 of the at least one taint vector 104 mutually
distinctively for a plurality of affiliates 126, system charac-
teristics 128, sources 112, events 114, activities 116, and/or
conditions 118.

In some embodiments, the computing system 100 can be
formed such that the thresholding logic 124 is operable to set
a threshold for application to at least one entry 120 of the at
least one taint vector 104 specifically to the at least one entry
120.

Thresholds can be selected as entry-specific, applied to
similar affiliates, applied universally, applied as a sum of
taint vector entries, and the like. Accordingly, the computing
system 100 can be configured wherein the thresholding logic
124 is operable to set a threshold for application to at least
one entry 120 of the at least one taint vector 104 uniformly
for application to similar affiliates 126.

Similarly, in some embodiments and/or applications the
computing system 100 can be formed such that the thresh-
olding logic 124 is operable to set a threshold for application
to at least one entry 120 of the at least one taint vector 104
universally wherein all entries 120 are compared to the
threshold for a plurality of affiliates 126, system character-
istics 128, sources 112, events 114, activities 116, and/or
conditions 118.

The computing system 100 can thus be formed to trap if
the taint vector 104 meets predetermined condition(s), such
as of the form v,>Th,, where v, is an element in the taint
vector 104 and Th, is the threshold for a taint i. The threshold
Th, can be applied for each element of vector, for example
any elements (v,>Th,), all elements (v >Th,), the sum of
elements, for masked elements, if any v, is greater than a
global threshold, and the like. For example, the computing
system 100 can be formed such that the thresholding logic
124 is operable to set a threshold for application to a sum of
entries 120 of the at least one taint vector 104.

In some embodiments, the computing system 100 can be
formed with thresholding logic 124 operable to set or
modify a threshold for application to at least one entry 120
of the at least one taint vector 104 based on variation of
tolerance level by application of a predetermine weight
function.

Furthermore, the computing system 100 can be consti-
tuted wherein the response logic 106 is operable to respond
to at least one comparison between the at least one entry 120
of the at least one taint vector 104 and a plurality of
thresholds.

Taints can be generated on the basis of questionability of
the data and of other aspects of operation and condition such
as prior negative experience or lack of familiarity with a data
source or entity. Referring to FIG. 1C, embodiments of the
computing system 100 can further comprise monitoring
logic 130 which is operationally coupled to the response
logic 106 and operable to accumulate the plurality of taints
105 arranged as at least one entry 120 of the at least one taint
vector 104.
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In various embodiments, the computing system 100 can
be constituted to implement a wide range of accumulation
functions. For example, the computing system 100 can be
formed such that one or more of the at least one taint vector
104 are operable as an accumulator of a plurality of taint
indicators indicative of potential security risk from a plu-
rality of distinct sources 112 at distinct times. One or more
of a corresponding plurality of distinct accumulation func-
tions can include comparing ones of the accumulated plu-
rality of taint indicators to at least one predetermined
threshold, performing power law analysis, and/or perform-
ing a race function. The computing system 100 can be
formed such that one or more of the at least one taint vector
104 are operable as an accumulator for counting the number
of tainted instructions. Other suitable accumulation func-
tions can operate by counting various occurrences or aspects
of operation such as counting the number of taints 105,
counting the number of taints 105 per memory unit, counting
the number of instructions tainted, counting the number of
instructions written as a result of a taint, counting the
number of data loads and stores, counting the number of
memory accesses, counting the number of calls, counting the
number of returns, and counting the number of branches.
Still other counting aspects of accumulation functions can
include counting the number of integer overflows, counting
the number of network input/output events, counting the
number of null pointer references, counting the number of
buffer overruns/overflows, counting the number of repeated
attempts to access a key, and the like. Suitable accumulation
functions can be used to monitor any aspect of operation.

Referring to FIG. 1C in combination with FIG. 1H, The
monitoring logic 130 can be operable to determine whether
information from a particular source or entity is trusted
based on assessment of security risk. Thus, in a further
aspect of operation, the computing system 100 can further
comprise monitoring logic 130 operationally coupled to the
response logic 106 which is operable to acquire and monitor
a history of the ones of the at least one taint vector 104 in
a feedback loop 142 that correlates taints 105 with responses
to the taints 105.

In various embodiments, the computing system 100 can
be operable to specity at least one of a plurality of decay
options selected from applying decay after a predetermined
number of operations to avoid triggering on outlying events,
setting decay to account for rare and spurious events with a
probability of occurrence by chance during long term moni-
toring, incrementing/decrementing using a single vector,
and/or subtracting a predetermined number. Other suitable
decay options can include shifting a taint vector 104 in an
interval of time, shifting a taint vector 104 at a predeter-
mined instruction count, shifting a taint vector 104 at a
predetermined processor cycle count, copying a taint vector
104 periodically to memory to maintain an old version while
incrementing/decrementing to enable restoration following
an invalid or error condition, and imposing decay that
balances accumulation. Further examples of suitable decay
options can include applying decay periodically, applying
decay with a varying period that varies based on a sensitivity
meter, applying decay with a varying period that varies
based on environment, applying decay with a varying period
that varies based on activity type, applying decay according
to a programmable parameter at a programmable rate, and
the like.

In various embodiments, the monitoring logic 130 can be
constituted to perform various tracking and monitoring
operations to enable enhanced detection of intrusion. For
example, in some embodiments the computing system 100
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can be configured wherein the monitoring logic 130 is
further operable to track taint indicators characterized by a
range of taintedness from potentially suspicious to definite
taints 105.

The monitoring logic 130 can be constructed to perform
various comparisons to indicate error or intrusion. For
example, the computing system 100 can be configured
wherein the monitoring logic 130 is further operable to
monitor comparisons selected from a group including deter-
mining whether any elements are greater than a predeter-
mined threshold, determining whether all elements are
greater than a predetermined threshold, determining whether
the sum of some elements is greater than a predetermined
threshold, determining whether the sum of all elements is
greater than a predetermined threshold, and the like.

The computing system 100 can be configured to discern
actual security risks from innocent and/or coincidental
events. For example, in some embodiments the monitoring
logic 130 can be operable to monitor the plurality of sources
112, events 114, activities 116, and/or conditions 118 to
detect and discern one or more potentially innocent and/or
coincidental events such as null pointer references, attempts
to secure part of a processor, innocent and/or coincidental
events arising from a region that raises suspicion, and the
like.

In some embodiments, the computing system 100 can
further comprise monitoring logic 130 operationally coupled
to the response logic 106 which is operable to update the
taint vector 104, process the taint vector 104, and determine
a security risk condition based on the processing of the taint
vector 104. The response logic 106 can be operable to trap
in response to the security risk condition.

Referring to FIG. 1D, a computing system 100 can be
operable as at least part of a federated system which can be
implemented in an infrastructure such as an architecture
including servers and clients. For example, gaming code
servers and gaming console clients can interact by running
program code that executes in part on machines controlled
by the server and in part on machines controlled by the
client. Intrusion detection via accumulation of taints can
enable the interaction to be mutually trusted by both sides.
In an illustrative embodiment, the computing system 100
can be operable as at least part of a federated system
comprising a least a first source 112(1) and a second source
112(2). Accordingly, the computing system 100 can be
configured such that one or more of the at least one taint
vector 104 can comprise an entry 120 that is allocated to
selected one or more of the plurality of resources 102
wherein taints 105 of the selected one or more of the
plurality of resources 102 are federated to the entry 120. A
taint indicator of the first source 112(1) can be tracked
against at least one of the taint indicators of the second
source 112(2).

The computing system 100 can be operable as at least part
of a networked system including multiple computing
devices such as computing system 100 which interfaces with
remote and potentially untrusted computers and may be the
source of security risk events such as attacks. Security risk
events or attacks can arise from other sources including
computing devices and systems, storage and devices inside
a firewall or local to a targeted machine. In general, com-
puters and networks can represent a variety of local or
globally distributed systems and networks that can supply
information via a plethora of communication channels and
protocols such as the Internet. Thus, the computing system
100 can further comprise monitoring logic 130 operationally
coupled to the response logic 106 which is operable to
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monitor taints 105 in network 134 input/output operations.
The response logic 106 can be operable to trap to a software
process 132 based at least partly on determination of a
network 134 input/output condition of an attempt of mal-
ware 136 to communicate to a malware operator 138.

Security risk events and attacks can originate remote from
a local and potentially trusted network, and can similarly
originate from local users, systems, devices, and storage.
Accordingly, the computing system 100 can further com-
prise monitoring logic 130 operationally coupled to the
response logic 106 which is operable to monitor taints 105
using a hardware device 140. The response logic 106 can be
operable to insert initial taint notifications using a software
process 132. In some embodiments, the computing system
100 can be constituted to address security risk events that
arise from a local device such as keyboard, network inter-
face, communication devices, local storage including
memory and long-term storage devices, and other computers
and systems.

The systems and techniques disclosed herein are operable
in the context of physical hardware and software-oriented
configurations. The systems and techniques are further oper-
able for embodiment as virtual computers and devices
presented or emulated within a virtualization system. Thus,
the computing system 100 can be used in physical hardware
systems, virtualized systems, and combination systems with
both physical and virtual aspects, with functionality distrib-
uted across devices or systems. Thus, taint information can
be received from a source remote from a targeted system,
such as from an interface, a network, a gateway, remote
computer, or the like.

Taint information can be received from some source and
can be destined for some target storage location and down-
stream usage. Information or data can be considered tainted,
potentially tainted, suspect, or known untainted based on
multiple criteria. Tainted information or events are defined
according to a particular implementation and security policy
in a range from “of interest,” potentially untrusted, and
suspect to untrusted, potentially dangerous, and malicious.
Information can be considered tainted based on entity
including source, target, and interface; and also based on
characteristics or conditions of information receipt such as
conveying protocol or transaction; or based on a combina-
tion of considerations.

In some embodiments, shown in FIG. 1G, the computing
system 100 can be configured wherein one or more of the at
least one taint vector 104 comprise a composite taint vector
146 that correlates a taint source 148 and a taint activity type
150.

Referring to FIGS. 1D and 1G, in various embodiments
and/or applications of the computing system 100, taints 105
can be integrated with a processor 152. Accordingly, the
computing system 100 can further comprise at least one
processor 152 included in the plurality of resources 102. The
at least one taint vector 104 can be selectively positioned
within the at least one processor 152 proximal to at least one
source at which a taint originates.

In some embodiments, the computing system 100 can
further comprise at least one processor 152 included in the
plurality of resources 102 in a configuration wherein the at
least one taint vector 104 comprises a single taint bit
corresponding to the processor 152 to indicate a taint
indicative of potential security risk associated with the
processor 152. In some embodiments and/or applications,
the processor 152 can have at least one register integrated
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into the processor 152. A taint vector 104 can indicate a taint
indicative of potential security risk associated with the
register.

Taints can be generated in association with operation of a
translation lookaside buffer (TL.B) 154 in the processor 152.
A translation lookaside buffer (TLB) 154 is a processor
cache which can be used by memory management hardware
to improve virtual address translation speed. Processors use
a TLB to map virtual and physical address spaces. TLB are
used widely in hardware which uses virtual memory.

The TLB 154 can be implemented as content-addressable
memory (CAM), using a CAM search key which is the
virtual address to produce a search result which is a physical
address. If the TLB holds the requested address—called a
TLB hit, the CAM search quickly yields a match and the
retrieved physical address can be used to access memory. If
the TLB does not hold the requested address—a TLB miss,
the translation proceeds by looking up the page table in a
process called a page walk. The page walk is computation-
ally expensive process, involving reading contents of mul-
tiple memory locations and using the contents to compute
the physical address. After the page walk determines the
physical address, the virtual address to physical address
mapping is entered into the TLB.

A stream monitoring instruction can be implemented to
improve efficiency and performance of the TLB by support-
ing a software predictor. The instruction can be used to
monitor misaligned or split access. A memory access is
aligned when the data item accessed is n-bytes long and the
data item address is n-byte aligned. Otherwise, the memory
access is misaligned. Monitoring for misaligned access can
be performed by hardware, resulting in a trap, or somewhat
less efficiently by software. In practice, monitoring for
misaligned access has a high false positive rate, for example
approaching 90%. A predictor can be configured, for
example by microarchitecture adjustment or taint accumu-
lation, to indicate whether the misaligned access hits are
accurate.

The processor 152 can be configured to change voltage,
frequency, and/or power based on the number of cache
misses. For example, logic can accumulate taint indicators to
detect an abundance of cache misses or other performance
problems, the voltage can be varied such as increased to cure
the problem. The logic can dynamically adjust operating
parameters according to the amount of traffic. Frequency and
voltage can be adjusted, for example whenever a change in
frequency occurs, the voltage can be modified accordingly.

Logic in a memory interface can detect when memory is
full to some threshold level, for example 70%, for example
by accumulating taint indicators. If memory is full to the
threshold level, a predetermined taint indicator condition is
found, and a high level of access is occurring, memory speed
can decrease. In response, the frequency and voltage of
operation can be dynamically increased to maintain a
desired memory speed.

In various embodiments, logic for performing dynamic
adjustment can be positioned in memory, in a logic interface,
in a processor. A hardware configuration can optimize by
active adjustment, redirection, or possibly a combination of
adjustment and redirection. For example, a computation-
intensive process with many instructions to be executed
rapidly can be addressed by running the processor at a higher
rate by increasing operating frequency and voltage, and/or
some of the burden can be shifted to components other than
the processor to maintain processor execution at a lower
frequency.
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Taint accumulation can also be used to allocate system
resources. Various aspects of resource allocation include
hardware threading, computational limits, pooled resources,
entitlements, and others. Resource allocation can be handled
via various architectural aspects of a system including
microarchitecture, instruction set architecture (ISA), oper-
ating system, library calls, and taint accumulation. Software
can associate capabilities with particular library functions or
software objects. This software can be in the form of
compiler, operating system, or others. The operating system
can, for example, create a profile for any process running
floating point operations and give that entitlement.
Resources allocated include processors, central processing
units (CPUs), graphics hardware, network controllers,
memory, memory management, other hardware, and the
like. Resources further include power, cycles, and the like.

Hardware Threading.

Several aspects of hardware threading are currently
implemented in processors such as CPUs. Simultaneous
threading (SMT), hyperthreading, or simultaneous hyper-
threading relate to hardware execution of two or four threads
selected for running at any time, managed according to
many fine-grained scheduling decisions. In a cycle, two
threads are selected at instruction fetch, typically at the front
of the pipeline and hardware determines which of the two
thread’s instructions to fetch. An instruction for each of the
threads pass to an out-of-order machine within which the
instructions are running concurrently. For example, an arith-
metic logic unit (ALU) instruction from thread 1 and a
memory instruction from thread 2 can run simultaneously.

Another type of hardware threading is interleaved multi-
threading (IMT) which removes all data dependency stalls
from the execution pipeline. One thread is relatively inde-
pendent from other threads so the probability of one instruc-
tion in one pipeline stage needing an output from an older
instruction in the pipeline is low. IMT is conceptually
similar to pre-emptive multi-tasking used in operating sys-
tems.

In contrast to CPU multithreading which handle relatively
few threads (typically two or four threads), graphics pro-
cessing units (GPUs) are stream processors for computer
graphics hardware and manage hundreds or thousands of
threads, thus using much more sophisticated scheduling.
When blocking occurs, for example on a cache miss such as
from a memory reference, a very large number of threads are
blocked. Threads are chosen for execution on massively
parallel thread arrays. In a typical arrangement, a processor
has approximately 64,000 threads of which only about a
thousand execute at one time. Underlying operations during
execution include scheduling, addressing cache misses, and
the like. Rather than scheduling from a memory pool, GPUs
schedule instructions for execution from a very large pool of
threads, waiting for memory to become available to run the
next thread.

A CPU can be configured for a CPU thread hierarchy
which includes a currently running list and a pool of
non-running threads enabled to receive information perti-
nent to computational limits from devices or components
such as special-purpose hardware. In an illustrative embodi-
ment, the information pertinent to computational limits can
be monitored via taint indication and taint accumulation, and
resources allocated accordingly.

Computational limits can be imposed via generation of
taint indicators and taint accumulation. A limit on compu-
tation can be imposed according to setting of priority level
which is, in turn, based on available resources. One example
resource that can be monitored to set limits on computation
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is the battery. Limits on computation can be imposed based
on battery consumption, battery life remaining. Computa-
tional limits can be addressed via a framework of setting
capabilities, for example specifying a capability to execute
on selected processing resources. In an example implemen-
tation, the capability can be set up in metadata.

Taint accumulation is suitable for managing computa-
tional limits since addressing computational limits can be
fairly complex, involving not only information from moni-
tored resources but also user input. For example, a deter-
mination by hardware of low battery level and associated
limited battery life can be overridden by a user who may
request a software application to run in anticipation of being
able to soon recharge the battery at a line power source.

Performance capabilities can be used in combination with
taint accumulation to manage resources. A performance
capabilities framework can be defined to address handling of
a pool of available resources. A thread pool pattern can be
configured wherein a number of threads are created to
perform a number of tasks which are typically organized in
a queue. Usually, the number of tasks is greater than the
number of threads. A thread upon completing an associated
task will request the next task from the queue until all tasks
have completed. The thread can then terminate or become
inactive until new tasks are available. The number of threads
can be tuned to improve performance, and can be dynami-
cally updated based on the number of waiting tasks. Increas-
ing the size of the thread pool can result in higher resource
usage.

A hardware scheduler can respond to any countable or
measurable operating condition or parameter, for example
electrons, constraints, frequency, cycles, power, voltage, and
the like, to control the thread pool and pool of resources. The
countable or measurable operating conditions and/or param-
eters can be monitored over time using taint accumulation.
Two highly useful conditions or parameters for monitoring
are power and cycles, which are the basis for other measur-
able phenomena. Monitoring of operating conditions can be
performed in hardware or via software call.

Furthermore, software can associate capabilities with
particular objects such as libraries.

Taints for main memory may be located in different
places, organized differently among different memory loca-
tions or types, and/or associated with different amounts of
memory. In an example configuration, a single taint vector
can be allocated for all main memory, which can have
multiple entries that are associated with different memory
ranges. Taints can be organized by or applied to memory
pages. Level of taint may be indicated per memory block. A
separate taint table can be used if a general page table is
read-only, and a size of a separate taint table may be reduced
via hashing. Taints can be applied on a per-byte basis, but
then likely only 1-2 bits and significant overhead. Accord-
ingly, as shown in FIG. 1E, taints can be associated with
main memory to facilitate intrusion detection in a taint
mechanism. Thus, various aspects of taint vector location
and/or granularity can be formed in memory.

In some embodiments, the computing system 100 can
further comprise at least one memory 156 included in the
plurality of resources 102. The at least one taint vector 104
can be selectively positioned in a respective at least one
location within the memory 156. In some implementations,
taints 105 can be selectively distributed in a plurality of
locations and organized distinctively for one or more of the
plurality of taints 105. Multiple taints 105 can be associated
with selected amounts of memory 156 individually among
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one or more of the plurality of taints 105. If desired, a single
taint vector 104 can be allocated for an entire memory 156.

In some embodiments, a single taint vector 104 can be
allocated for an entire memory 156 and comprise a plurality
of entries 120 associated with different ranges in the entire
memory 156. Similarly, one or more taints 105 can be
applied to the memory 156 on a per-byte basis. Granularity
can be managed on the basis of a memory page. Similarly,
one or more of the plurality of taints 105 can be applied to
respective memory pages.

In various embodiments and/or applications, granularity
can be managed on the basis of a memory block, for example
with a level of taint indicated per memory block. The
memory 156 can include memory blocks with different
memory types. Granularity of the memory types can be
selected mutually distinctively such that the size of a
memory block per taint vector 104 is mutually distinctive.
For example, the memory 156 can include volatile and
nonvolatile memory. More specifically, a read-only page
table and a read-write taint table can be allocated such that
the size of the read-write taint table can be reduced by
hashing. Thus, in some embodiments, the computing system
100 can be configured for handling a memory taint hash
wherein logic can be operable to form a memory taint hash
table and use the memory taint hash table to indicate a level
of taint per memory block. Thus, the memory taint hash
table can be accessed to indicate a level of taint per memory
block using the memory taint hash table.

In an example software embodiment, software can moni-
tor the system over history, or can be preprogrammed, and
fills in some sets in entitlement vector fields. Software can
determine values for the fields and fill in the bits of data,
possibly associated as a lookup table, an associated hash
table, an extra field to call for a library, and the like. For a
library call, an entitlement vector EV is returned. The
entitlement vector can be received from various sources, for
example from external to calling software. For example, the
entitlement vector EV may be installed into hardware as a
side effect of the library call.

A factor in determining whether the entitlement vector is
handled in software or hardware is the size of the vector.

In an example hardware implementation, a suitable
entitlement vector size is 256 bits, although any suitable size
is possible. For example, a vector of 64K bits is generally
considered too large for hardware implementation.

In some embodiments, an entitlement vector can be
associated with each library. The entitlement vector can be
used, for example, to eliminate floating point if desired,
reduce the number of floating point operations if such
operations are rarely used, reduce the scale as appropriate
when full accumulator width is unnecessary, increase sup-
port for the ALU.

The entitlement vector can be implemented as a call with
amemory address made in association with a call to a library
which, for example, can return a pointer or address location
to the entitlement vector.

Another field of the entitlement vector can be a chooser/
thread selector. The entitlement vector can be used by the
chooser/scheduler, which includes logic that performs
operations based on a single entitlement vector or possibly
relative entitlement vectors. Each Instruction Pointer (IP) or
thread can have an associated entitlement vector. For
example instruction pointers, for IP1, 1P2, IP3, IP4, then
four entitlement vectors can be allocated. Chooser/scheduler
logic considers the entitlement vector when scheduling the
next thread for computation. The logic informs the chooser/
scheduler about how to make the selection. The logic can
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perform selected functions to make the choice and for
scheduling, for example by elevating or decreasing priority
of a thread.

An example function using an entitlement vector (EV)
can compute the sum of weight times EV; compared to the
usage vector of Thread, a simple target function for evalu-
ating when to schedule threads from the highest priority to
the lowest priority. Thus, for a thread with high priority and
large requirement for resources, the thread can be elevated
in the scheduling list and resources are likely to be allocated.
In contrast, a thread that is a glutton for resources and has
low priority is likely to be deferred by the scheduler, moving
back or to the end of the list of scheduled threads. A high
priority thread that consumes only limited resources is likely
to be moved up in the schedule list, possibly to the front of
the list.

In some embodiments, the entitlement vector supplied by
a HINT instruction can be modified by a capability process.
Tlustratively, the entitlement vector can set entitlement to
use X resources which can be limited by the operating
system for example by reduced weighting or setting of
maximum allowed resources. The entitlement vector can
also be limited according to usage, wherein a thread using an
inordinately large amount of resources can be limited when
the high usage is detected or predicted.

The entitlement vector function F,(w,, EV,; v,) of weight
(w,), entitlement vector (EV,), and resource volume (v;,) can
be either linear or non-linear.

The entitlement vector enables association of scheduling
with functions. The entitlement vector further enables asso-
ciation of priority with functions.

One of the challenges in allocating resources is the
potential for highly unpredictable changes in resource
demand. For example, minor changes in workload can result
in substantial variation in performance. Another challenge is
unpredictable behavior in response to context switches from
one process to another. One technique for dealing with these
challenges is making a library call as a technique for
determining whether a context switch occurred or, if not
expecting to make a library call, perform an action that
randomizes priority. If degradation results from making the
library call, then performance can be monitored to determine
whether performance is reduced. If so, priority of the threads
can be randomized. Example techniques for randomization
can include a Boltzmann search, simulated annealing, hop-
around, other lateral computing techniques, and the like. A
Boltzmann search can be performed by a Boltzmann
machine, a stochastic recurrent neural network that is
capable of learning internal representations and solving
combinatoric problems. Simulated annealing is a computer
technique used for answering difficult and complex prob-
lems based on simulation of how pure crystals form from a
heated gaseous state. Instead of minimizing the energy of a
block of metal or maximizing strength, the program can
minimize or maximize an objective relevant to the problem
at hand, specifically randomization to attain stable perfor-
mance. In a hop-around technique, priority or other param-
eters can be bounced around to determine a local maximum
but not global optimum. Search optimizations can be used to
determine whether truly at a maximum value. The new
results can be compared with an old optimum.

In some embodiments, a supervisor circuit, for example
for thermal and/or overvoltage protection, can modify the
entitlement vector.

The entitlement vector, for example in combination with
a usage vector and/or taint accumulation monitoring, can be
used for monitoring power control. In various embodiments,
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power control monitoring can be performed remotely or
locally, possibly by the operating system.

In an example embodiment, a user can supply an entitle-
ment vector using instructions, for example by specification
of the beginning and end of a function. The entitlement
vector can be used in association with a performance moni-
toring unit which monitors and determines other entitlement
vectors. In various embodiments, the entitlement vectors can
be maintained separately or combined into a single effective
entitlement vector.

Context switches can be specified as taint indications for
usage in taint accumulation. Context switches can be defined
as switches from one process to another. In contrast, a thread
can typically be considered limited to a single context.
Standard threads and mock threads share resources includ-
ing context and can have multiple processes, multiple
threads within the same privilege level technically. How-
ever, a threading library and threading operating system can
be created wherein threads are not limited to the same
context. Threads can comprise simply a stack and an instruc-
tion pointer, and can run in the same address space, for
example threads can run as different users in the same
address space. In a case of multiple users accessing the same
database, if the database is a shared-memory database,
software or an interpreter can be responsible for ensuring
that unauthorized user(s) cannot access certain data. In the
case of users assigned different privilege levels or different
threads in the same virtual memory address space assigned
different privilege levels, different registers are assigned to
particular users and/or threads, and thus switches between
users and/or threads are context switches.

Privileges can be associated with a page, a page table, an
actual physical memory address, a virtual memory address,
and the like.

Capabilities and entitlement can be used in combination
with taint accumulation for managing resources. In some
embodiments, the capabilities vector and the entitlement
vector can be merged. In some aspects of operation, entitle-
ment can be considered to be a capability. With entitlements
specified, the associated performance capabilities and man-
agement of associated capabilities prevents unauthorized
access to data and/or resources, and prevents system take-
over, unless specifically allowed or enabled by a system call,
improving security and enabling denial of service to attacks.

Merged capabilities and entitlement can be used to pre-
vent microarchitectural denial of service. Denial of service
is typically considered to arise from a hacker on a network
blocking access by using up all or a substantial part of
network bandwidth. For example, when operating on a
virtual machine in a cloud computing platform (such as
Amazon Elastic Compute Cloud (EC2)) a job can be run that
thrashes the cache, resulting in an architectural denial of
service in response. Preventative remedies can include
checking for performance counters and preventing such
unauthorized accesses. Microarchitectural remedies can also
be used such as implementing microarchitectural covert
channels in which, for various types of code, secret keys
running on the same virtual machine can be detected.
Similarly, microarchitectural covert channels can be used to
monitor timing of code to detect intrusion and to detect
whether a bit is set in a particular bit position which may
indicate intrusion. Microarchitectural techniques can thus
include timing channels and covert channels for use when-
ever a shared resource is to be modulated. Covert channels
can be applied, for example, in modulating a disk arm,
detecting seeks on a file system.
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In various embodiments, operations implementing and
using the entitlement vector can be executed by software in
a processor, by microcode, in logic, in hardware, or the like.

An infrastructure configured to support multiple proces-
sors in a system can have a shared memory and message
passing between threads, processes, processors, and the like.
Operating systems (OS) can include various mechanisms to
enable message passing, for example pipelines, daemons
that use sockets, loopback, and the like. Any suitable number
of processors can be supported in the system, from relatively
small systems with few processors to large scale systems
with hundreds of thousands or millions of processors. In a
typical large scale system, the multitudes of processors
communicate via fat trees which support the large amount of
bandwidth demanded by the large scale system. The amount
of bandwidth in different positions in the tree is variable,
depending on traffic. In various other configurations, the
many processors can communicate via meshes or buses, via
Gigabit Ethernet, via CDMA-CE (Code Division Multiple
Access-series CE), and the like. In large interconnects, the
number of processors determines what functionality is
attainable. For example, for more than about 1000 proces-
sors, memory can no longer be shared. At around 100
processors, memory space can be shared but cache-coher-
ence is typically not possible and memory is thus non-cache-
coherent shared memory. Cache-coherence is generally con-
sidered to cause problems for more than about sixteen
processors so that fewer processors at a first level can have
cache-coherent shared memory.

For a supercomputer or other system with the large
number of processors, for example more than about 1000,
for which memory is non-shared, Message Passing Interface
(MPI) can be used for communication. MPI uses multiple
threads but does not use shared memory. The MPI multiple
threads are all part of local shared memory, but no global
shared memory exists. The amount of local shared memory
is limited, resulting in a communications bottleneck. Super-
computer memories use Message Passing Interface (MPI)
which, to a first order, includes a limited number of instruc-
tions such as send some location, buffer, end buffer, and
receive some entity, buffer, end buffer, and the like. MPI is
an application programming interface (API) and is thus a
library call. The received entity can be, for example, a
channel connecting the sender and the receiver, although
channels are rarely used in MPI since channels do not scale
beyond about a thousand processors. Accordingly, MPI can
use commands with masks which identify which processors
are to receive a message. A difficulty with MPI is that
different code must be written, and a different core engine
and interface, for small-scale and large-scale parallelism.
Thus, send-and-receive communication such as is used by
MPI is suitable if memory is shared.

What is desired is a technique for expanding send-and-
receive communication more broadly. In accordance with
system and method embodiments, a communications appli-
cation programming interface (API) can be created that
enables communication between different types of threads
and hides that the threads are sharing memory. The com-
munications API can enhance functionality of a Transmis-
sion Control Protocol (TCP) socket. The TCP socket, also
termed an Internet socket for network socket, is an endpoint
of a bidirectional inter-process communication flow across
and Internet Protocol (IP)-based computer network such as
the Internet. In some embodiments, the communications API
can also incorporate functionality of MPI into that of a TCP
socket. In a distributed system, a processor can communi-
cate with a Network Interface Controller (NIC) and a send
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instruction puts data on a queue to send to the NIC and pass
through the routing network to a specified destination. The
communications API can perform communications via TCP-
IP, in some configurations optimizing aspects of TCP-IP
such as by ordering packets, and also via other protocols.
The communications API can include send-and-receive
functionality, and include one or more channels, which is
operable with TCP-IP. Some of the channels can be shared
memory in the form of a buffer with a counter. Some
channels can connect to the NIC, some channels to TCP-IP,
and some channels can have other functionality. In some
embodiments, the communications API can support different
types of channels. One example of a channel type is simply
registers. Another type of channel can run two hardware
threads with a pipeline coupled between the two threads.

The communications API can be adapted to handle the
possibility of overflow. For example, for a channel imple-
mented as shared registers, filling the registers to capacity
can cause overflow to memory, which can call a trap or
exception. In some embodiments, an overflow condition can
be specified as a taint indication and accumulated for
resource management.

Another technique for expanding send-and-receive com-
munication more broadly can comprise creating a message
passing infrastructure in hardware. Speed is one advantage
of forming the message passing infrastructure in hardware.
For example in the case of a system call, conventionally a
slow operation, hardware can be configured to support a
send instruction operable to check a bit in a channel selected
for the send operation to determine whether the channel is
available and, if not, performing a system call by faulting to
the system call. Thus, the hardware can be configured to pass
execution through the operating system in response to
desired conditions.

In an example embodiment, the message passing infra-
structure hardware can be configured to avoid passing
execution through the operating system, for example to
avoid the context switch inherent with going to the operating
system. In another example embodiment, the hardware can
be configured to include a message passing paradigm and
one core can be run in ring 0 to enable access to operating
system calls. The operating system is not a separate process
but rather a library call in a library. Another option is to
allocate a hardware thread to the operating system.

The operating system performs a ring O call via a system
call which, in terms of hardware implementation, can be a
function call to change a bit, granting permission to change
the bit, and identification of the stack from which the OS is
operating. In one example implementation, the user can
explicitly control the stack, for example by placing the
operating system stack in a different register. In another
implementation, a system call can change the instruction
pointer and the stack.

The message passing infrastructure hardware implemen-
tation can, for example, include support for send and receive
calls. The hardware implementation can enable faster oper-
ating speed. For particular special cases, hardware send and
receive calls can be faster than a shared library call. Send
and receive are global messages, supporting point-to-point
communication in two-party messaging. In some embodi-
ments, the hardware implementation can support put and get
APIs to enable sending a message to a designated address
asynchronously or synchronously, as selected. The desig-
nated address is in a global address space partition, not local
load-store. The put and get APIs can handle access to shared
physical memory by sending a request to the master or
server for the designated memory location. The memory is
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hashed across all the global memory space. In the illustrative
implementation, get and put can be system calls rather than
instructions, thus facilitating global access. Because the get
and put system calls are relatively resource-expensive, effi-
ciency can be attained by communicating blocks of data, for
example 64K, at one time rather than for individual bytes.

For a cache-coherent shared memory that is accessed
using the put and get system calls, different schemes can be
used depending on what entities are communicating. For
entities which share memory, the get and put calls simply
access the shared memory. For entities separated by sub-
stantial physical or network distances, the get and put calls,
if unable to fulfill the call by shared memory access, by
running through the same router or similar local actions can
send the calls to the network interface to relay remotely, for
example across the world. For shared memory, whether
cache-coherent or cache-noncoherent, the put and get, send
and receive operations are relatively simple since all entities
can access the same memory. More complexity arises when
memory is not shared. In various embodiments, when
memory is not shared different schemes can be used such as
copy-on-write (copying the shared memory), creating in
remote memory the shared memory that shares the same
capability, an implicit in the put and get, or other options.

The message passing infrastructure thus can include hard-
ware support for the various put and get, send and receive,
or the like system calls or instructions. The message passing
infrastructure can be configured to enable two threads to be
forked and used with the put and get calls to enable optimum
speed performance. The send and receive, and put and get
instructions, as described, consume two hardware threads or
might consume two passive threads.

In some embodiments, the put-get and send-receive can
be combined with access bits which designate memory to
which the sender is allowed access. Passing along the access
bits can enable a reduction in overhead while enabling
protection across processes. The overhead of switching or
sending a message drops significantly because the receiver
already knows the memory to which the sender has access.

In some embodiments and/or applications, taints 105 can
be applied to memory 156 segregated by type to facilitate
intrusion detection using the taint mechanism. Memory can
thus be segregated into different types such as for code and
data memory, or the like. Different types can have taint
mechanisms applied differently to the different types. For
example, different memory types can have different levels of
granularities, for example larger or smaller blocks of
memory per taint vector. Also, different memory types can
have more or fewer bits per taint vector entry. Furthermore,
different thresholds, decay rates, and the like can be applied
to different entries corresponding to different memory types.

Referring to FIG. 1F, a graphical data description shows
an example operation that can be executed by the computing
system 100 to facilitate intrusion detection using taint accu-
mulation. In an illustrative embodiment, the monitoring
logic 130 operationally coupled to the response logic 106
can be operable to monitor taints 105 and create a trust
profile based on the monitoring. The response logic 106 can
be operable to trap to a software process 132 based at least
partly on determination of a suspicious condition.

In an example embodiment, a software model can be
configured to use and enforce performance capabilities. In a
relatively simple operation, if power is too low, then the
software can limit the maximum number of threads or other
capabilities. For example, in a cell processor case the
number of threads can be limited to less than 1000. Funda-
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mentally, software can disable functionality if sufficient
power is unavailable for scheduled operations.

In another example, a sensor or sensors can detect
whether battery bias voltage level is recovering too slowly
or, similarly, a thermistor can indicate a battery is too hot
which may indicate operating at too aggressive a level. A bit
or bits can be set indicating the recovery time is too long.
The set bit(s) can be used to throttle the maximum thread
hopping rate in the case of a CPU with two threads. The bits
disallow a thread hop and set an allowable rate of thread
hopping; or perhaps allow thread hopping which creates
slowing but saves power.

An example of performance capability monitoring and
management can be implemented in a CPU with four
process threads each having instruction pointers. One of the
four threads is selected to execute for next instruction cycle.
Various types of information can be monitored to determine
which thread to select including recent demand for power,
memory, CPU cycles, and the like. For example, a process
can be a resource glutton and allocated fewer resources to
enable other processes priority. Information is available
relating to recent performance, requested performance, and
acceptable performance (niceness).

Another option is to use a “NICE” instruction which can
be used to adjust the priority level of predetermined instruc-
tions, enabling the instructions to be run in the background
at a convenient time. For example, if a processor or battery
is running too hot, the NICE instruction can reduce the
urgency of executing code. In a particular example imple-
mentation, the NICE instruction can change a multiplier and
step of a decay algorithm.

High and low capabilities can be specified. For example,
a particular software routine can sometimes, although rarely,
use floating point operations so the capability for such
routines can be set low. Operations performed by software
can include monitoring, configuring parameters, and the
like.

Capabilities can be used to implement security. Typically,
a system has only a few predetermined capabilities. How-
ever, a system can be configured in which every memory
addressing register is assigned a capability. If the register
specifies a capability to access the associated memory
location, the location can be accessed. Otherwise, access is
prohibited, for example producing a fault or incrementing a
counter or accumulator, such as a taint accumulator, which
can be noted in an intrusion vector. For any aspect related to
security, if a test is failed, the counter is incremented and
placed in the intrusion vector.

An instruction can be specified in an instruction set which
sets a capability. In various embodiments, the instruction can
be implemented in software, hardware, the operating sys-
tem, or the like. The instruction can operate in association
with a capabilities vector. In some embodiments, the instruc-
tion can also or otherwise operate in association with a hint
vector.

The capabilities vector can be associated with a pointer,
an address, and an object. A highly basic capability is a
lower bound and an upper bound. Other more complex
capabilities can be implemented. In various implementa-
tions, the capabilities vector and the entitlement vector can
be separate, or can be combined. Merging the capabilities
vector and the entitlement vector enables software structur-
ing.

The capabilities vector can be used to enable fine-grained
permission. Fine-grained permission facilitates operations
of multiple users or entities in a shared memory data base,
enabling the multiple users to access storage such as disk
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and to perform system calls, but limit access to data only to
the user who owns the data or is authorized to access the
data. Another benefit of fine-grained permissions is an
ability to facilitate and improve security while multiplexing
software threads onto hardware threads. In an example
configuration, 64000 software threads are multiplexed onto
only four hardware threads. Only a small portion of the
software threads are running at one time with the remaining
software threads idle. The software threads alternately run
on the hardware threads, then go back to idle to allow other
software threads to run.

A classic security hole in a database management is the
inability to limit access to data for the different software
threads multiplexed onto the hardware threads. A database
typically does not allocate a hardware thread to a user. In
typical database operation, a request is received and placed
on a software thread so that users are multiplexed onto the
software threads, an action giving very little protection.
Better protection is attained by allocating each user to a
separate process, a technique that is prohibitively expensive
because the threads are expensive. Multiplexing the users
onto software threads leaves a security hole because access
to a particular user’s data allowed while running the user’s
software thread on a hardware thread is not removed when
the user’s software thread is swapped out from the hardware
thread. The access permission remains so access remains
enabled. The depicted system solves the security hole by
using capabilities.

In a non-capabilities system, any of the software threads
can access the entire database at any time, including any data
that has been placed in shared memory (unless a call out is
made through the operating system to enable any of the
threads to create 1/0O, a prohibitively expensive operation).
Simple databases only have one peer thread so all threads
can access any data. Many typical databases have 64 threads
that can access any data in shared memory but only four
threads that can access 1/0. These systems sometimes have
different privilege levels (for example, Intel’s rings 0, 1, 2,
3) so specity compatibility. Most code runs in ring 3 and the
kernel in ring 0. Rings 1 and 2 are generally not used
although several databases have features that can run in ring
1 and ring 2 but are rare and used primarily for benchmarks
(a benchmark hack).

In an example implementation that uses capabilities,
generally a processor has 16 or 32 registers, some of which
are addressing registers. A capability can be loaded to enable
access to selected threads. A capability can be loaded to
access a particular thread (owned by another user) into
hardware thread 0, enabling running as that user. This is one
type of context switch—to change the software thread that
is executing on hardware thread 0. The capability registers
can then be changed, a minor context switch and a change
in privilege level. The action does not invalidate translation
lookaside buffer (TLBs), but rather moves the permissions
out of the TLB. The access control model is also changed.
Capabilities can be used in this manner to change operations,
guaranteeing only access to data and/or resources for which
access is allowed by a permission-granting entity. Capabili-
ties can guarantee a transitive exposure of only the data
and/or resources of another user according to granted autho-
rization. The technique is deterministic so that, by inspec-
tion, which accesses are possible is known.

Intrusion detection can use the concept of capabilities to
implement fine-grained security.

Entitlements can be monitored using taint accumulation.
Entitlements can be used to allocate resources. Entitlements
can be defined as user-specified rights wherein a process is
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entitled to a predetermined percentage of power or of time.
A scheduler or chooser can monitor entitlement values and
schedule the next highest priority process. A particular
scheme can allocate modulo by bit to avoid starving a
process with lower entitlement. In some conditions, the level
of entitlement can be overridden or adjusted. Entitlement
can be set according to a predetermined algorithm which
defines a “fair share” for the processes, for example round-
robin, history-based, randomized, and the like, which are
efficient since a large history need not be accumulated. Thus,
an efficient and inexpensive hardware implementation is
possible. In some embodiments, a request for resources can
be treated as a taint indicator and accumulated using a taint
accumulator or taint vector to determine how to allocate
among processes.

A metric can be specified which enables modification of
a goal. A selected level of entitlement to resource consump-
tion can be assigned to each process. One example scheme
can be a short, low complexity method which is imple-
mented while storing a limited operation history. For
example, when running low on battery charge, a sequence
1-2-3-4-4-3-2-1 can be used to determine whether any of the
processes is a resource glutton and can rank the processes on
order of gluttony. The most gluttonous can be assigned the
lowest priority. Another option can rank processes according
to gluttony in combination with another factor of goodness
(niceness). Processes can be ranked for the next cycle with
the most gluttonous given last priority or can be ranked
according to gluttony and one other nice system criterion.
Monitoring and/or control can be performed highly effi-
ciently if hardware, although either monitoring can be
performed either in hardware or software in various embodi-
ments. Power management units in CPUs can be used for
monitoring, for example to monitor for increases or
decreases in voltage or frequency, and for thread execution
selection.

Capabilities can be used to perform monitoring and
allocation of resources. For example, granting the capability
to run video processing software can be combined with
simultaneous granting of power capability.

Power is typically global to a process or to an individual
CPU. Use of capabilities enables more refined control of
power, for example power can be made specific to an object
or library routine. With power global to a process, the
process will continue to run in absence of a fault, a page
fault, a disk access, or the like, and will run until blocked by
the operating system scheduler, allowing high power con-
sumption. Use of capabilities enables power to be controlled
on a per-hardware thread granularity. Use of capabilities
further enables power to be controlled specific to a per-
hardware thread granularity for throttling power.

Processors can use instruction prefetch to improve execu-
tion speed by reducing wait states. The processor prefetches
an instruction by request from main memory before the
instruction is needed and, when retrieved from memory,
placing the prefetched instruction in a cache. When needed,
the instruction is quickly accessed from the cache. Prefetch
can be used in combination with a branch prediction algo-
rithm which anticipates results of execution to fetch pre-
dicted instructions in advance. Prefetches conventionally
operate independently. In some embodiments, a processor
disclosed herein can prefetch according to holistic monitor-
ing of operating conditions such as voltage, frequency, and
the like to more accurately determine or predict which
instructions to prefetch.

The cache can be reconfigured dynamically, for example
beginning with a single large, slow cache which can be
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divided into a relatively small subcache and a larger sub-
cache to enable faster operation. In embodiments disclosed
herein, operating characteristics can be monitored to gener-
ate information for dynamic reconfiguring of the cache. In
some embodiments, cache phenomena such as cache hits
and misses can be handled as taint indicators for taint
accumulation, for example using a taint vector, to facilitate
handling of the cache. As a result of the monitored operating
conditions, the cache can be seclectively configured for
slower or faster speed, larger and smaller cache subregions.
In some conditions, part of the cache can be temporarily
disabled, for example to save power. Monitoring of operat-
ing conditions can enable a suitable balance of consider-
ations to determine whether part of the cache is to be
disabled, for example determining whether the power saved
in disabling part of the cache is appropriate in light of the
power lost with a greater cache miss rate.

Disclosed system and method embodiments can use oper-
ating condition monitoring and holistic control at the level of
calling an object. In an object-level paradigm, various
objects or values (such as numbers, symbols, strings, and the
like) can be combined to form other objects or values until
the final result objects or values are obtained. New values
can be formed from existing values by the application of
various value-to-value functions, such as addition, concat-
enation, matrix inversion, and the like. Various objects have
different impacts on system operations.

An example of an object which, when called, can have
large consumption of power or other resources is video
encoding which is a brute force, unintelligent algorithm
which runs much more efficiently on dedicated hardware
than a general CPU, and has real-time constraints. Video
conferencing has similar real-time constraints.

Another object example is video games which perform
many different tasks concurrently including processing
geometry and processing video simultaneously, possibly
processing speech for Skype communications, voice com-
pression, input/output, and the like. Video games thus typi-
cally involve concurrent operation of multiple objects such
as the game processing tasks and interface (Application
Programming Interface, API) that perform different actions
separately. The multiple objects are commonly run as sepa-
rate threads, unless prohibitive due to the large amount of
overhead in running threads that are not essential. Separate
threads simplify programming.

In some configurations, applications, and conditions, mul-
tiple threads can be run wherein the threads need not be run
in the same context.

Hyperthreading is a particular implementation of hard-
ware threading. Software threading is a slightly different
implementation of threading wherein the threads are often,
but not always, related. In some implementations, a proces-
sor can include a GOAL register that can be used to set
performance characteristics for particular threads. For
example, if different routines (Skype, physics) are run in
different threads, selected operating characteristics for the
threads can be loaded into the GOAL register to give the
threads separate issues. Allocating priority to the different
threads can be difficult. In an illustrative system, priority to
the threads can be allocated using a NICE utility which
specifies acceptable performance for a particular operation
and allows reduced priority in appropriate conditions for
tasks that can be assigned lower priority with little or no
consequence.

In an example implementation, priorities, particular types
of priorities, and entitlements can be associated with par-
ticular library routines to facilitate management of relatively
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heuristic phenomena. A library can be constituted wherein
entitlements are assigned to individual library routines. The
library includes information for adjusting the priority of
threads, for example by identifying a phenomenon as a taint
indication and accumulating taint indications. In some con-
figurations or applications, the library can support hint
vectors, such as branch prediction hints to specify whether
static prediction should be taken or not taken. In some
embodiments, the library can be configured to support
NICE-type handling of a hint vector.

A process scheduler can be constituted to support priori-
tized entitlements and resource allocations upon calling
selected libraries. A typical embodiment includes such sup-
port in software, although hardware support can also be
implemented. For example, a network library can include
library routines adapted for heavy network usage so that
resources giving access to the network are more important
processes to schedule. More entitlements are allocated to
network-related resources. Libraries can also be configured
to handle secondary priorities that change dynamically. For
example, a sound card can have a greater power priority and
have a pattern of operation wherein a process uses a network
card and possibly other subsystems in combination with the
sound card. Thus, the network card and other subsystems
can also be allocated a higher priority. Similarly, for a
process which performs less modeling and number compu-
tation in lieu of higher input/output operations and sending
of information, a higher level of priority can be allocated to
input/output resources.

Entitlements can be used to specify operations of a library.
For example, a library with entitlement to run a predeter-
mined number of floating point operations per second can,
in response to a condition of executing instructions with few
or no floating point computations, use the condition as a hint
to power down floating point hardware, thus saving power.
Thus, if computations include fixed point operations but no
floating point operations, an a priori indicator can be gen-
erated designating that the floating point hardware is not
needed in the near future and can be powered down. A
process can call a library and, if known that a resource is not
needed, the resource can be temporarily halted, thereby
changing the entitlement level of that process with respect to
the resource (for example a floating point unit) to a very low
point.

In the illustrative example, the entitlement level of the
process with respect to the floating point unit can be changed
to very low because the resource is not needed for a
foreseeable duration. The process thus indicates to other
processes a willingness to relinquish access to the source, for
example a willingness to be “nice” about allowing others to
use the resource, so that access is deferred in favor of any
other process that uses the resource, or the resource is shut
down if not currently needed by another process.

Rather than have hardware determine demand for a
resource after instructions have been executed, the illustra-
tive system and method can use a call to a library or the
result of making a call to the library as an indicator of
entitlement niceness. This entitlement can be enforced in the
manner of capabilities, for example by requesting access to
a memory region, a request which may be denied. The
library can give information regarding entitlement, thus
giving a priori knowledge.

Resource allocation can also be managed using hints. An
illustrative instruction that uses a hint is a hint that not much
floating point computation is to be performed, a hint indica-
tive of power demand. For example, hints to maintain power
at a low level or to maintain power at a high level. An
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exception can create problems when using hints, since a hint
is not unwound in the event of an exception. For example,
for a hint to maintain high power, an exception which
changes the condition but does not reset the hint allows
hardware to remain in a high power mode, potentially
forever. Examples of problems with hint processing in
conditions of context switching include problems with
unlocking memory locations.

In contrast to entitlements, capabilities enable mecha-
nisms to unwind.

Entitlement Vector can be used as part of or in affiliation
with taint accumulation or a taint vector for managing
resources. An entitlement vector can have multiple fields, for
example including floating point, power, arithmetic logic
unit (ALU), graphics triangle including any suitable entitle-
ments, translation lookaside buffers TLBs, virtual memory
usage, and the like. The entitlement vector can thus be used,
for example, to power down the TLB as no longer relevant
to operation, or to enable usage of a wide range of virtual
memory.

Another field of the entitlement vector can specify scale.
Examples of scale can be human scale, width of the accu-
mulator, or any suitable scale. For example, for a finger
print, a suitable scale can be no more than 2 MB.

A further field of the entitlement vector can be data path
width, a similar concept to scale. A large instruction size, for
example 1024 bits, wastes power, but typically only a
portion of the bits are used at one time so that a desired
subset of the bits can be activated, changing the data path
width. The scale concept leads to the concept of a selected
partial data path width. The data path width is part of the
entitlement. For example, of 1024 bits logic can compute the
number of bits actually needed and allocate that predeter-
mined subset of bits, such as 128 bits. The data path field
thus can be used to lower the data path width used of the
available entitlement vector width, for example activating a
super-accumulator data path width.

Referring to FIGS. 2A through 27, schematic flow dia-
grams depict an embodiment or embodiments of a method
operable in a computing device adapted to manage security
risk by monitoring taints and responding to predetermined
taint conditions detected by the monitoring, for example by
conditionally trapping based on the taint vector. An embodi-
ment of a method 200 operable in a computing device for
handling security risk, shown in FIG. 2A, can comprise
providing 201 at least one taint vector; listing 202 in the at
least one taint vector at least one of a plurality of taints
indicative of potential security risk originating from at least
one of a plurality of resources, and monitoring 203 at least
one taint vector. The method 200 can further comprise
responding 204 to a predetermined taint condition.

In some embodiments, as depicted in FIG. 2B, a method
205 can further comprise listing 206 in the at least one taint
vector the plurality of taints comprising one or more of a
plurality of distinct classes comprising a plurality of distinct
sources, events, activities, and/or conditions.

In some embodiments, as shown in FIG. 2C, a method
207 can be implemented which further comprises selectively
allocating 208 ones of a plurality of entries of the at least one
taint vector to ones of the plurality of taints.

Referring to FIG. 2D, embodiments of a method 210 for
handling security risk can further comprise trapping 211
based at least partly on a current value of an entry of the at
least one taint vector.

In some embodiments, illustrated in FIG. 2E, the method
215 can further comprise arranging 216 at least one entry of
the at least one taint vector using at least one accumulation
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function, accumulating 217 the plurality of taints, and select-
ing 218 at least one accumulation function. For example, in
various embodiments and/or in various conditions, accumu-
lating 217 the plurality of taint indicators can be performed
according to one or more selected functions of a plurality of
accumulation functions. The accumulation functions can
include comparing ones of the accumulated plurality of taint
indicators to at least one predetermined threshold, perform-
ing power law analysis, performing a race function, per-
forming a counting function, and the like. Suitable counting
functions can include counting the number of taints, count-
ing the number of taints per memory unit, counting the
number of instructions tainted, counting the number of
tainted instructions, counting the number of instructions
written as a result of a taint, counting the number of data
loads and stores, counting the number of memory accesses,
counting the number of calls, counting the number of
returns, counting the number of branches, counting the
number of integer overflows, counting the number of net-
work input/output events, counting the number of null
pointer references, counting the number of buffer overruns/
overflows, counting the number of repeated attempts to
access a key, and the like.

In some embodiments and/or applications, the taints can
be accumulated over time. For example, as depicted in FIG.
2F, an embodiment of the method 220 can further comprise
accumulating 221 taints in at least one entry of the at least
one taint vector, and trapping 222 based at least partly on a
current value of an accumulated entry of the at least one taint
vector.

In various embodiments and/or applications, shown in
FIG. 2G, a method 223 can further comprise selecting 224
one or more of the plurality of taints for analysis. The taints
can be selected, for example, from one or more circum-
stances or phenomena including a null pointer reference, an
attempt to access a secured part of a processor, an attempt to
access a secured resource, a buffer overrun, and an event
originating in a region that raises suspicion. Other example
taints can include a fault, an integer overtlow, a plurality of
taint indicators that exceeds at least one predetermined
threshold, a taint indicated by power law analysis, a taint
indicated by a race function, and an attempt to access a key,
and a variety of other circumstances or phenomena.

Further embodiments, for example as illustrated in FIG.
2H, a method 225 can further comprise accumulating 226
taints in at least one entry of the at least one taint vector,
comparing 227 a current value of an accumulated entry of
the at least one taint vector to a threshold, and trapping 228
based at least partly on the comparison.

In some embodiments a target function can be applied in
monitoring and analyzing taints. For example, as shown in
FIG. 21, a method 230 can further comprise applying 231 at
least one function to the at least one entry of the at least one
taint vector.

In particular embodiments, as shown in FIG. 2], a method
232 can further comprise selecting 233 the at least one
function from a group consisting of weights, masks, sums,
combinations, arithmetic functions, logical operations, and
transforms.

As shown in FIG. 2K, a method 235 can perform taint
vector-based trapping for intrusion detection. An illustrative
method 235 can further comprise setting 236 a threshold for
application to at least one entry of the at least one taint
vector, comparing 237 the one or more entries of the at least
one taint vector to the threshold, and trapping 238 based at
least partly on the comparison.
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Similarly, referring to FIG. 2L, a method 240 can further
comprise setting 241 a threshold for application to at least
one entry of the at least one taint vector mutually distinc-
tively for a plurality of affiliates, system characteristics,
sources, events, activities, and/or conditions.

Similarly, referring to FIG. 2M, a method 242 of handling
security can further comprise setting 243 a threshold for
application to at least one entry of the at least one taint vector
specifically to the at least one entry.

Thresholds can vary by affiliate, current system charac-
teristics or activities, and the like. Accordingly, as depicted
in FIG. 2N, an embodiment of a method 245 for handling
security can further comprise setting 246 a threshold for
application to at least one entry of the at least one taint vector
uniformly for application to similar affiliates.

Taints for memory may be located in different places,
organized in various manners among different memory
locations or types, and/or associated with different amounts
of memory. Hence, referring to FIG. 20, a method 247 can
further comprise setting 248 a threshold for application to at
least one entry of the at least one taint vector universally
wherein all entries are compared to the threshold for a
plurality of affiliates, system characteristics, sources, events,
activities, and/or conditions.

Furthermore, as shown in FIG. 2P, a method 250 can
further comprise setting 251 a threshold for application to a
sum of entries of the at least one taint vector.

In various embodiments, thresholds can be dynamically
modified based on operations and received taints. As illus-
trated in FIG. 2Q, a method 252 can further comprise
modifying 253 a threshold based on variation of tolerance
level by application of a predetermine weight function, and
applying 254 the modified threshold to at least one entry of
the at least one taint vector.

Similarly, as depicted in FIG. 2R, a method 255 can
further comprise modifying 256 a threshold based on a
tolerance level selected on the basis of consequences of a
security risk event, and applying 257 the modified threshold
to at least one entry of the at least one taint vector.

Referring to FIG. 28, a method 260 of handling security
risk can further comprise comparing 261 at least one entry
of'the at least one taint vector to a plurality of thresholds, and
responding 262 to the comparison.

A taint indication can originate from outside of a system
being monitored or from internal to the system. A taint can
originate from local or remote software. A taint may arise
from suspicious operations or faults or from hints. A taint
can be determined, for example, by an attempt to write to a
web browser. Accordingly, as depicted in FIG. 2T, a method
265 can further comprise monitoring 266 taints, creating 267
a trust profile based on the monitoring, and trapping 268 to
a software process based at least partly on determination of
a suspicious condition.

Similarly, as shown in FIG. 2U, the method 270 can
further comprise monitoring 271 taints in network input/
output operations, determining 272 a network input/output
condition of an attempt of malware to communicate to a
malware operator, and trapping 273 to a software process
based at least partly on the determination.

Likewise, as illustrated in FIG. 2V, a method 275 can
further comprise monitoring 276 taints using a hardware
device, and inserting 277 initial taint notifications using a
software process.

Referring to FIG. 2W, a method 280 of handling security
risk can further comprise updating 281 the taint vector,
processing 282 the taint vector, determining 283 a security
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risk condition based on the processing of the taint vector,
and trapping 284 in response to the security risk condition.

Taints and responses to taints can be dynamically adjusted
through operations over time. Accordingly, as illustrated in
FIG. 2X, a method 285 of handling security risk can further
comprise acquiring 286 a history of the ones of the at least
one taint vector in a feedback loop, monitoring 287 the
history of the ones of the at least one taint vector in the
feedback loop, and correlating 288 taints with responses to
the taints.

Similarly, as shown in FIG. 2Y, a method 290 of handling
security risk can further comprise responding 291 to at least
one security risk event with at least one response, and
selecting 292 at least one response. Responses can include
ignoring one or more security risk events, logging the
security risk event(s), displaying a notification, or displaying
a warning message. Other example responses can include
generating an alarm, preventing a memory and/or register
write, modifying operating frequency, modifying operating
voltage, or modifying an operating parameter. Still other
responses can include performing a system call, calling a
trap and/or exception, terminating operation of selected
resources, activating a system shutdown, and others.

Referring to FIG. 2Z, a method 295 of handling security
risk can further comprise configuring 296 one or more of the
at least one taint vector as a composite taint vector that
correlates a taint source and a taint activity type.

Referring to FIGS. 3A and 3B, embodiments comprise a
computer program product 300 adapted to manage security
risk by accumulating and monitoring taint indications. The
computer program product includes a computer-readable
storage medium 306 bearing program instructions. The
program instructions are operable to perform a process in a
computing device. The computer program product can be
constituted as any combination of one or more computer
usable or computer readable medium(s), for example but not
limited to, communication, electronic, semiconductor, mag-
netic, optical, electromagnetic, infrared, in the form of
propagation medium, system, apparatus, device, or the like.
Specific examples of the computer-readable medium may
include, are not limited to, a wired connection, a wireless
connection, Internet or an intranet transmission media, an
optical fiber, a magnetic storage device, a portable diskette,
a hard disk, a portable compact disc read-only memory
(CDROM), an optical storage device, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM), Flash
memory, or the like. Similarly, the computer-usable or
computer-readable medium can be a visual display such as
paper, poster, screen view, that can be visually or electroni-
cally captured such as by optical scanning of a medium, then
compiled, interpreted, or otherwise processed.

As shown in FIG. 3A, the computer program product 300
can comprise program instructions 310 operable to provide
at least one taint vector, program instructions 312 operable
to list in the at least one taint vector at least one of a plurality
of'taints indicative of potential security risk originating from
at least one of a plurality of resources, and program instruc-
tions 314 operable to monitor the at least one taint vector.
The computer program product 300 can further comprise
program instructions 316 operable to respond to a predeter-
mined taint condition.

In some embodiments, the computer program product 300
can further comprise program instructions 318 operable to
list in the at least one taint vector the plurality of taints
comprising one or more of a plurality of distinct classes
comprising a plurality of distinct sources, events, activities,
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and/or conditions; and program instructions 320 operable to
selectively allocate ones of a plurality of entries of the at
least one taint vector to ones of the plurality of taints. The
computer program product 300 can further comprise pro-
gram instructions 322 operable to trap based at least partly
on a current value of an entry of the at least one taint vector.

In various embodiments and/or applications, the computer
program product 300 can further comprise program instruc-
tions 324 operable to accumulate taints in at least one entry
of the at least one taint vector, and program instructions 326
operable to compare a current value of an accumulated entry
of the at least one taint vector to a threshold. The computer
program product 300 can further comprise program instruc-
tions 328 operable to trap based at least partly on a current
value of an accumulated entry of the at least one taint vector
and/or based at least partly on the comparison.

As shown in FIG. 3B, the computer program product 300
can comprise program instructions 330 operable to select the
at least one function from a group consisting of weights,
masks, sums, combinations, arithmetic functions, logical
operations, and transforms; and program instructions 332
operable to apply at least one function to the at least one
entry of the at least one taint vector.

In some embodiments, the computer program product 300
can further comprise program instructions 334 operable to
set a threshold for application to at least one entry of the at
least one taint vector for selected ones of a plurality of
affiliates, system characteristics, sources, events, activities,
and/or conditions. The threshold can be set selectively from
among mutually distinctively, specifically to the at least one
entry of the at least one taint vector, uniformly for applica-
tion to similar affiliates, and universally wherein all entries
are compared to the threshold for a plurality of affiliates,
system characteristics, sources, events, activities, and/or
conditions. The computer program product 300 can further
comprise program instructions 336 operable to compare the
at least one entry of the at least one taint vector to the
threshold, and program instructions 338 operable to trap
based at least partly on the comparison.

In various embodiments and/or applications, the computer
program product 300 can further comprise program instruc-
tions 340 operable to modify a threshold based on variation
of tolerance level on the basis of consequences of a security
risk event or by application of a predetermine weight
function, and program instructions 342 operable to apply the
modified threshold to at least one entry of the at least one
taint vector.

Referring to FIGS. 4A and 4B, schematic block diagrams
illustrate embodiments of a computing system 400 adapted
to manage security risk by accumulating and monitoring
taint indications, and, for some embodiments, facilitating
response to predetermined taint conditions that are detected
during the monitoring. An embodiment of the computing
system 400 can comprise means 430 for providing at least
one taint vector 404, means 432 for listing in the at least one
taint vector 404 at least one of a plurality of taints 405
indicative of potential security risk originating from at least
one of a plurality of resources 402, and means 434 for
monitoring the at least one taint vector 404. The computing
system 400 can further comprise means 436 for responding
to a predetermined taint condition.

In some embodiments, the computing system 400 can
further comprise means 438 for listing in the at least one
taint vector 404 the plurality of taints 105 comprising one or
more of a plurality of distinct classes 410 comprising a
plurality of distinct sources 412, events 414, activities 416,
and/or conditions 418. The computing system 400 can
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further comprise means 440 for selectively allocating one
more of a plurality of entries 420 of the at least one taint
vector 404 to ones of the plurality of taints 405, and means
442 for trapping based at least partly on a current value of
an entry 420 of the at least one taint vector 404.

In various embodiments and/or conditions, security risk
can be assessed via one or more actions selected from
actions such as determining whether any elements are
greater than a predetermined threshold, determining whether
all elements are greater than a predetermined threshold,
determining whether the sum of some elements is greater
than a predetermined threshold, determining whether the
sum of all elements is greater than a predetermined thresh-
old, and the other similar suitable actions. Accordingly, the
computing system 400 can further comprise means 444 for
accumulating taints 405 in at least one entry 420 of the at
least one taint vector 404, and means 446 for comparing a
current value of an accumulated entry 420 of the at least one
taint vector 404 to a threshold. The computing system 400
can further comprise means 448 for trapping based at least
partly on a current value of an accumulated entry 420 of the
at least one taint vector 404 and/or based at least partly on
the comparison.

The computing system 400 enables usage of various
target functions for analysis of taints 405 to optimize moni-
toring and detection of security risks. Accordingly, the
computing system 400 can further comprise means 450 for
selecting the at least one function 422 from a group con-
sisting of weights, masks, sums, combinations, arithmetic
functions, logical operations, and transforms. The comput-
ing system 400 can further comprise means 452 for applying
at least one function 422 to the at least one entry 420 of the
at least one taint vector 404.

Referring to FIG. 4B, the computing system 400 can be
configured to dynamically adapt thresholds to operations
during execution. Accordingly, the computing system 400
can further comprise means 454 for setting a threshold for
application to at least one entry of the at least one taint vector
404 for selected affiliates, system characteristics, sources
412, events 414, activities 416, and/or conditions 418. The
threshold can be set selectively from among mutually dis-
tinctively, specifically to the at least one entry 420 of the at
least one taint vector 404, uniformly for application to
similar affiliates, and universally wherein all entries 420 are
compared to the threshold for a plurality of affiliates, system
characteristics, sources 412, events 414, activities 416, and/
or conditions 418. The computing system 400 can further
comprise means 456 for comparing the at least one entry 420
of the at least one taint vector 404 to the threshold, and
means 458 for trapping based at least partly on the com-
parison.

Similarly, the computing system can further comprise
means 460 for modifying a threshold based on variation of
tolerance level on the basis of consequences of a security
risk event or by application of a predetermine weight
function, and means 462 for applying the modified threshold
to at least one entry 420 of the at least one taint vector 404.

Taints can be allocated to a taint vector in any suitable
manner. For example, taints can be allocated at a selected
granularity selected from allocations including allocating
taints by memory page, allocating taints by byte, allocating
taints by word, allocating taints by memory block, allocating
taints by hardware process identifier (PID), and allocating
taints to enable a cross-thread taint. Additional allocations
can include allocating taints among hardware devices, allo-
cating taints by component, allocating taints by software
component, and the like.
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In various embodiments and/or conditions, one or more
decay options can be selected from a plurality of decay
options such as applying decay after a predetermined num-
ber of operations to avoid triggering on outlying events,
setting decay to account for rare and spurious events with a
probability of occurrence by chance during long term moni-
toring, incrementing/decrementing using a single vector, and
subtracting a predetermined number. Additional decay
options can include shifting a taint vector in an interval of
time, shifting a taint vector at a predetermined instruction
count, shifting a taint vector at a predetermined processor
cycle count, copying a taint vector periodically to memory
to maintain an old version while incrementing/decrementing
to enable restoration following an invalid or error condition,
imposing decay that balances accumulation, applying decay
periodically, applying decay with a varying period that
varies based on a sensitivity meter, applying decay with a
varying period that varies based on environment, applying
decay with a varying period that varies based on activity
type, applying decay according to a programmable param-
eter at a programmable rate, and the like.

In various embodiments and/or conditions, responding to
security risk in response to detection of the at least one
security risk event can be one or more responses selected
from a group of responses that range from relatively minor
informational actions to actions which can moderately or
substantially change system operations, or even terminate
some or all system operations. Minor or informational
responses can include including ignoring the at least one
security risk event, logging the at least one security risk
event, displaying a notification, displaying a warning mes-
sage, generating an alarm, and the like. Responses affecting
system operations can include preventing a memory and/or
register write, modifying operating frequency, moditying
operating voltage, modifying another operating parameter,
performing a system call, and others. More drastic responses
that can moderately or substantially affect operations can
include calling a trap and/or exception, terminating opera-
tion of selected resources, activating a system shutdown, and
the like.

Terms “substantially”, “essentially”, or “approximately”,
that may be used herein, relate to an industry-accepted
variability to the corresponding term. Such an industry-
accepted variability ranges from less than one percent to
twenty percent and corresponds to, but is not limited to,
materials, shapes, sizes, functionality, values, process varia-
tions, and the like. The term “coupled”, as may be used
herein, includes direct coupling and indirect coupling via
another component or element where, for indirect coupling,
the intervening component or element does not modify the
operation. Inferred coupling, for example where one element
is coupled to another element by inference, includes direct
and indirect coupling between two elements in the same
manner as “coupled”.

The illustrative pictorial diagrams depict structures and
process actions in a manufacturing process. Although the
particular examples illustrate specific structures and process
acts, many alternative implementations are possible and
commonly made by simple design choice. Manufacturing
actions may be executed in different order from the specific
description herein, based on considerations of function,
purpose, conformance to standard, legacy structure, and the
like.

While the present disclosure describes various embodi-
ments, these embodiments are to be understood as illustra-
tive and do not limit the claim scope. Many variations,
modifications, additions and improvements of the described
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embodiments are possible. For example, those having ordi-
nary skill in the art will readily implement the steps neces-
sary to provide the structures and methods disclosed herein,
and will understand that the process parameters, materials,
shapes, and dimensions are given by way of example only.
The parameters, materials, and dimensions can be varied to
achieve the desired structure as well as modifications, which
are within the scope of the claims. Variations and modifi-
cations of the embodiments disclosed herein may also be
made while remaining within the scope of the following
claims.
What is claimed is:
1. A computing system comprising:
one or more input interfaces configured to receive infor-
mation from a plurality of computing resources;
one or more processors configured to monitor one or more
taints associated with the information received from at
least one of the plurality of computing resources, the
one or more processors including at least:
at least one taint vector including a plurality of vector
fields operated upon by one or more instructions in
parallel to monitor and respond to at least one of a
plurality of taints indicative of potential security risk
originating from at least one of the plurality of com-
puting resources, the at least one of the plurality of
taints independently associated with the at least one of
the plurality of computing resources, wherein the plu-
rality of vector fields of one or more of the at least one
taint vector include at least:
at least one vector field identifying at least one of the
plurality of computing resources; and
at least one vector field corresponding to at least one of
sources, events, conditions, or suspicious activities
associated with the identified at least one of the
plurality of computing resources;
at least one taint bias vector; and
response logic operable to monitor the at least one taint
vector and respond to a predetermined taint condition
in a predetermined manner, wherein the response logic
is configured to respond to one or more predetermined
instructions in parallel by recursively adding the at least
one taint bias vector to the at least one taint vector;
wherein the predetermined manner includes one or more
of ignoring a security risk event, logging the at least
one security risk event, displaying a notification, dis-
playing a warning message, generating an alarm, rais-
ing an exception, preventing writing by or to one or
more of the plurality of computing resources, trapping
one or more operations attempted by one or more of the
plurality of computing resources, modifying operating
frequency, modifying operating voltage, modifying an
operating parameter, performing a system call, termi-
nating a particular process, or ending one or more
operations of one or more of the plurality of computing
resources.
2. The computing system according to claim 1 wherein:
the plurality of taints include one or more of a plurality of
distinct classes corresponding to a plurality of distinct
sources, events, activities, or conditions.
3. The computing system according to claim 1 wherein:
one or more of the at least one taint vector include one or
more entries selectively allocated to one or more of the
plurality of taints.
4. The computing system according to claim 1 wherein:
the response logic is configured to trap based at least
partly on a current value of an entry of the at least one
taint vector.

10

15

20

25

30

35

40

45

50

55

60

65

42

5. The computing system according to claim 1 wherein:

the response logic is configured to accumulate taints in at
least one entry of the at least one taint vector to trap
based at least partly on a current value of an accumu-
lated entry of the at least one taint vector.

6. The computing system according to claim 1 wherein:

the response logic is configured accumulate taints in at
least one entry of the at least one taint vector to trap
based at least partly on a comparison of a current value
of an accumulated entry of the at least one taint vector
to a threshold.

7. The computing system according to claim 1 wherein:

the response logic is configured apply at least one func-
tion to the at least one entry of the at least one taint
vector.

8. The computing system according to claim 7 wherein:

the at least one function is selected from one or more of
weights, masks, sums, combinations, arithmetic func-
tions, logical operations, or transforms.

9. The computing system according to claim 1 further

comprising:

thresholding logic operationally coupled to the response
logic and configured to set a threshold for application
to at least one entry of the at least one taint vector,
wherein:

the response logic is configured to trap based at least
partly on a comparison of the at least one entry of the
at least one taint vector to the threshold.

10. The computing system according to claim 9 wherein:

the thresholding logic is configured to set a threshold for
application to at least one entry of the at least one taint
vector mutually distinctively for a plurality of affiliates,
system characteristics, sources, events, activities, or
conditions.

11. The computing system according to claim 9 wherein:

the thresholding logic is configured to set a threshold for
application to at least one entry of the at least one taint
vector specifically to the at least one entry.

12. The computing system according to claim 9 wherein:

the thresholding logic is configured to set a threshold for
application to at least one entry of the at least one taint
vector uniformly for application to similar affiliates.

13. The computing system according to claim 9 wherein:

the thresholding logic is configured to set a threshold for
application to at least one entry of the at least one taint
vector universally wherein all entries are compared to
the threshold for a plurality of affiliates, system char-
acteristics, sources, events, activities, or conditions.

14. The computing system according to claim 9 wherein:

the thresholding logic is configured to set a threshold for
application to a sum of entries of the at least one taint
vector.

15. The computing system according to claim 9 wherein:

the thresholding logic is configured to set or modify a
threshold for application to at least one entry of the at
least one taint vector based on variation of tolerance
level by application of a predetermined weight func-
tion.

16. The computing system according to claim 9 wherein:

the thresholding logic is configured to set or modify a
threshold for application to at least one entry of the at
least one taint vector based on a tolerance level selected
on the basis of consequences of a security risk event.

17. The computing system according to claim 9 wherein:

the response logic is configured to respond to at least one
comparison between the at least one entry of the at least
one taint vector and a plurality of thresholds.
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18. The computing system according to claim 1 further
comprising:
monitoring logic operationally coupled to the response
logic and configured to monitor taints and create a trust
profile based on the monitoring, wherein:
the response logic is configured to trap to a software
process based at least partly on determination of a
suspicious condition indicated at least in part using
the trust profile.
19. The computing system according to claim 1 further
comprising:
monitoring logic operationally coupled to the response
logic and configured to monitor taints in network
input/output operations, wherein:
the response logic is configured to trap to a software
process based at least partly on determination of a
network input/output condition of an attempt of
malware to communicate to a malware operator.
20. The computing system according to claim 1 further
comprising:
monitoring logic operationally coupled to the response
logic and configured to monitor taints using a hardware
device configured to monitor the taints autonomously
of software; wherein:
the response logic is configured to insert initial taint
notifications using a software process.
21. The computing system according to claim 1 further
comprising:
monitoring logic operationally coupled to the response
logic and configured to update the taint vector, process
the taint vector, and determine a security risk condition
based on the processing of the taint vector; wherein:
the response logic is configured to trap in response to
the security risk condition.
22. The computing system according to claim 1 further
comprising:
monitoring logic operationally coupled to the response
logic and configured to acquire and monitor a history of
the one or more of the at least one taint vector in a
feedback loop that correlates taints with responses to
the taints.
23. The computing system according to claim 1 further
comprising:
monitoring logic operationally coupled to the response
logic and configured to accumulate the plurality of
taints arranged as at least one entry of the at least one
taint vector using at least one accumulation function
selected from:
comparing one or more of the accumulated plurality of
taints to at least one predetermined threshold;
performing power law analysis;
performing a race function;
counting a number of taints;
counting a number of taints per memory unit;
counting a number of instructions tainted;
counting a number of tainted instructions;
counting a number of instructions written as a result of
one or more taints;
counting a number of data loads and stores;
counting a number of memory accesses;
counting a number of calls;
counting a number of returns;
counting a number of branches;
counting a number of integer overflows;
counting a number of network input/output events;
counting a number of null pointer references;
counting a number of buffer overruns/overflows; or
counting a number of repeated attempts to access a key.
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24. The computing system according to claim 1 wherein:
the response logic is configured to respond to at least one
security risk event with at least one response selected
from:
ignoring the at least one security risk event;
logging the at least one security risk event;
displaying a notification;
displaying a warning message;
generating an alarm;
preventing a memory or register write;
modifying operating frequency;
modifying operating voltage;
modifying an operating parameter;
performing a system call;
calling a trap or exception;
terminating operation of selected resources; or
activating a system shutdown.

25. The computing system according to claim 1 wherein

one or more of the plurality of taints are selected from:

a null pointer reference;

an attempt to access a secured part of a processor;

an attempt to access a secured resource;

a buffer overrun;

an event originating in a region that raises suspicion;

a fault;

an integer overflow;

a plurality of taint indicators that exceeds at least one
predetermined threshold;

a taint indicated by power law analysis;

a taint indicated by a race function; or

an attempt to access a key.

26. The computing system according to claim 1 wherein:

one or more of the at least one taint vector include a
composite taint vector that correlates a taint source and
a taint activity type.

27. The computing system according to claim 1 further

comprising:

a composite taint vector including at least two taint
vectors each including a plurality of bits corresponding
to at least one of one or more sources, one or more
events, one or more activities, one or more conditions,
or one or more suspicious activities in association
between the at least two taint vectors; wherein

the at least two taint vectors each correspond to a data
source; and
the composite taint vector is configured for monitoring

and tracking the associated at least one of one or
more sources, one or more events, one or more
activities, one or more conditions, or one or more
suspicious activities corresponding to the at least two
taint vectors.

28. The computing system according to claim 1 further

comprising:

a composite taint vector including at least two taint
vectors each including a plurality of bits corresponding
identically to one or more of a plurality of distinct
classes for the at least two taint vectors, the at least two
taint vectors including at least one taint vector that is
decayed over a selected number of operations and at
least one taint vector that is maintained for restoration
in reaction to an invalid or error condition.

29. The computing system according to claim 1 further

comprising:

at least one timer register configured to change at a
predetermined rate; wherein the at least one taint vector
is configured to update in a predetermined manner in
response to receipt of the one or more of the plurality
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of taint indicators and in response to a predetermined
condition of the at least one timer register.

30. The computing system according to claim 1 wherein:

the at least one taint vector is configured into a plurality

of portions that update independently according to one
or more distinct accumulation functions in response to
receipt of the one or more of the plurality of taint
indicators corresponding selectively to one or more
distinct taint conditions and one or more sources.

31. The computing system according to claim 1 further
comprising:

hardware threading circuitry configured for at least one of

simultaneous multithreading (SMT) or hyperthreading;
wherein the at least one taint vector is configured into
a plurality of portions that update independently
according to one or more distinct accumulation func-
tions in response to receipt of the one or more of the
plurality of taint indicators corresponding selectively to
one or more distinct threads executing on the hardware
threading circuitry.

32. The computing system according to claim 1 wherein
the at least one taint vector including a plurality of vector
fields operated upon by one or more instructions in parallel
to monitor and respond to at least one of a plurality of taints
indicative of potential security risk originating from at least
one of a plurality of computing resources includes at least:

at least one vector field identifying at least one of the

plurality of computing resources; and

at least one vector field corresponding to at least one of

sources, events, conditions, or suspicious activities
associated with the identified at least one of the plu-
rality of computing resources,

the at least one taint vector configured to set a hierarchy

of suspicion based at least partially on the at least one
of sources, events, conditions, or suspicious activities.

33. The computing system according to claim 1 wherein
one or more of the at least one taint vector including a
plurality of vector fields operated upon by one or more
instructions in parallel to monitor and respond to at least one
of a plurality of taints indicative of potential security risk
originating from at least one of a plurality of computing
resources includes at least:

at least one vector field identifying at least one of the

plurality of computing resources; and

at least one vector field corresponding to at least one of

sources, events, conditions, or suspicious activities
associated with the identified at least one of the plu-
rality of computing resources, wherein the at least one
taint vector is configured to respond to one or more
predetermined instructions in parallel by applying a
hint associated with the at least one of sources, events,
conditions, or suspicious activities.

34. The computing system according to claim 1 wherein
the response logic operable to monitor the at least one taint
vector and respond to a predetermined taint condition com-
prises:

response logic operable to determine the at least one taint

bias vector to selectively increase or decrease a level of
sensitivity to security risk based at least in part on the
at least one of sources, events, conditions, or suspicious
activities associated with the identified at least one of
the plurality of computing resources.

35. The computing system according to claim 1, wherein
the computing resources include:

at least one of a network, a system, a processor, memory,

a register, hardware, microarchitecture, floating point
circuitry, input/output circuitry, video circuitry, audio
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circuitry, a software system, software, an operating
system, a library, a library call, a library function, a
software object, a virtual entity, bandwidth, or power.
36. A method operable in a computing device configured
at least partially in hardware for handling security risk
comprising:
receiving information from a plurality of computing
resources;
monitoring one or more taints associated with the infor-
mation received from at least one the plurality of
computing resources;
providing at least one taint vector including a plurality of
vector fields operated upon by one or more instructions;
executing the one or more instructions in parallel to
monitor and respond to the at least one taint vector
including a plurality of vector fields associated with at
least one of a plurality of taints indicative of potential
security risk originating from at least one of the plu-
rality of computing resources, wherein the plurality of
vector fields of one or more of the at least one taint
vector including a plurality of vector fields include at
least:
at least one vector field identifying at least one of the
plurality of computing resources; and
at least one vector field corresponding to at least one of
sources, events, conditions, or suspicious activities
associated with the identified at least one of the
plurality of computing resources;
independently associating the at least one of the plurality
of taints with the at least one of the plurality of
computing resources;
monitoring the at least one taint vector; and
responding to a predetermined taint condition including at
least responding to one or more predetermined instruc-
tions in a predetermined manner in parallel by recur-
sively adding at least one taint bias vector to the at least
one taint vector;
wherein the predetermined manner includes one or more
of ignoring a security risk event, logging the at least
one security risk event, displaying a notification, dis-
playing a warning message, generating an alarm, rais-
ing an exception, preventing writing by or to one or
more of the plurality of computing resources, trapping
one or more operations attempted by one or more of the
plurality of computing resources, modifying operating
frequency, modifying operating voltage, modifying an
operating parameter, performing a system call, termi-
nating a particular process, or ending one or more
operations of one or more of the plurality of computing
resources.
37. The method according to claim 36 further comprising:
listing in the at least one taint vector the plurality of taints
including one or more of a plurality of distinct classes
including one or more of a plurality of distinct sources,
events, activities, or conditions.
38. The method according to claim 36 further comprising:
selectively allocating one or more of a plurality of entries
of the at least one taint vector to one or more of the
plurality of taints.
39. The method according to claim 36 further comprising:
trapping based at least partly on a current value of an entry
of the at least one taint vector.
40. The method according to claim 36 further comprising:
accumulating taints in at least one entry of the at least one
taint vector; and
trapping based at least partly on a current value of an
accumulated entry of the at least one taint vector.
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41. The method according to claim 36 further comprising:

accumulating taints in at least one entry of the at least one
taint vector;

comparing a current value of an accumulated entry of the
at least one taint vector to a threshold; and

trapping based at least partly on the comparison.

42. The method according to claim 36 further comprising:

applying at least one function to the at least one entry of
the at least one taint vector.

43. The method according to claim 42 further comprising:

selecting the at least one function from weights, masks,
sums, combinations, arithmetic functions, logical
operations, or transforms.

44. The method according to claim 36 further comprising:

setting a threshold for application to at least one entry of
the at least one taint vector;

comparing the at least one entry of the at least one taint
vector to the threshold; and

trapping based at least partly on the comparison.

45. The method according to claim 36, wherein the

computing resources include:

at least one of a network, a system, a processor, memory,
a register, hardware, microarchitecture, floating point
circuitry, input/output circuitry, video circuitry, audio
circuitry, a software system, software, an operating
system, a library, a library call, a library function, a
software object, a virtual entity, bandwidth, or power.

46. A computing system comprising:

one or more input interfaces configured to receive infor-
mation from a plurality of computing resources;

one or more processors configured to monitor one or more
taints associated with the information received from at
least one of the plurality of computing resources, the
one or more processors including at least:
at least one taint vector including a plurality of vector

fields operated upon by one or more instructions;

means for executing the one or more instructions in
parallel to monitor and respond to the at least one taint
vector including a plurality of vector fields associated
with at least one of a plurality of taints indicative of
potential security risk originating from at least one of
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the plurality of computing resources, wherein the plu-

rality of vector fields of one or more of the at least one

taint vector include at least:

at least one vector field identifying at least one of the
plurality of computing resources; and

at least one vector field corresponding to at least one of
sources, events, conditions, or suspicious activities
associated with the identified at least one of the
plurality of computing resources;

means for independently associating the at least one of
the plurality of taints with the at least one of the
plurality of computing resources;

means for monitoring the at least one taint vector; and

means for responding to a predetermined taint condition

in a predetermined manner including at least respond-

ing to one or more predetermined instructions in par-

allel by recursively adding at least one taint bias vector

to the at least one taint vector;

wherein the predetermined manner includes one or
more of ignoring a security risk event, logging the at
least one security risk event, displaying a notifica-
tion, displaying a warning message, generating an
alarm, raising an exception, preventing writing by or
to one or more of the plurality of computing
resources, trapping one or more operations attempted
by one or more of the plurality of computing
resources, modifying operating frequency, modify-
ing operating voltage, modifying an operating
parameter, performing a system call, terminating a
particular process, or ending one or more operations
of one or more of the plurality of computing
resources.

47. The computing system according to claim 46, wherein

the computing resources include:

at least one of a network, a system, a processor, memory,
a register, hardware, microarchitecture, floating point
circuitry, input/output circuitry, video circuitry, audio
circuitry, a software system, software, an operating
system, a library, a library call, a library function, a
software object, a virtual entity, bandwidth, or power.
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